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Abstract. Image inverse problem aims to reconstruct or restore high-quality images
from observed samples or degraded images, with wide applications in imaging sci-
ences. The traditional methods rely on mathematical models to invert the process of
image sensing or degradation. But these methods require good design of image prior
or regularizer that is hard to be hand-crafted. In recent years, deep learning has been
introduced to image inverse problems by learning to invert image sensing or degrada-
tion process. In this paper, we will review a new trend of methods for image inverse
problem that combines the imaging/degradation model with deep learning approach.
These methods are typically designed by unrolling some optimization algorithms or
statistical inference algorithms into deep neural networks. The ideas combining deep
learning and models are also emerging in other fields such as PDE, control, etc. We
will also summarize and present perspectives along this research direction.

AMS subject classifications: 00-XX

Key words: Image inverse problem, model-driven deep learning, statistical model, optimization
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1 Introduction

Image inverse problem [1] attempts to reconstruct / restore high-quality images from a
few observed samples or degraded images captured by different imaging equipments.
It has wide applications in medical imaging [2], compressive sensing image reconstruc-
tion [3], natural image restoration [4]. It is a fundamental and challenging task because
it requires to well regularize the inverse process to have a better solution in the image
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space. The specific tasks that involve image inverse problems include image denoising,
image deblur, image dehaze, image restoration, image inpainting, super-resolution, etc.
The research on image inverse problem has been popularized for a long history, based on
traditional signal processing methods [5], regularization-based methods [6–8], and deep
learning methods [2, 9, 10].

1.1 Traditional methods

Traditionally, image inverse problems are mainly tackled by different model-based meth-
ods. The essential contributions of these methods are the design of different regularizers
or priors from various perspectives, e.g., regularized variational methods, sparse rep-
resentation methods and statistical methods. The variational methods are based on en-
ergy models taking image as continuous function, and regularized by total variation
(TV) [4, 6, 11], generalized total variation (GTV) [7, 12], non-local regularizers [8, 13] or
wavelet domain regularization [14, 15]. Sparse representation-based method assumes that
the image or image patches can be represented by a sparse combination of basis in a
dictionary [8, 16–20]. Statistical methods in image inverse problem generally restore / re-
construct image by maximum a posteriori estimation using a Bayesian framework, and
different natural image priors are designed based on statistical models such as Gaussian
scale mixture [21], Markov random field [22] or conditional random field [23].

These traditional mathematical models are commonly built based on physical mech-
anism of imaging and image degradation process, with the expert-designed image prior
and regularizer to constrain the image space. Due to the modeling of psychical mecha-
nism, these models are explainable and without relying on a large set of training data as
the deep learning approach that will be introduced as follows.

1.2 Deep learning methods

Deep learning [24] approach has been recognized as a state-of-the-art tool in artificial in-
telligence with wide applications in face recognition [25], machine translation [26], chess
and Go competition [27], and medical image analysis [28].

In recent years, deep neural networks have been introduced to solving image in-
verse problems [1, 2, 29]. These deep learning methods directly learn a mapping from
the degraded image to the high-quality image taking advantage of the nonlinearity and
high capacity of deep neural network. Various networks have been devised for image
super-resolution, denoising [30], inpainting [30], medical image reconstruction. For im-
age super-resolution, Dong et al. [9] firstly uses a deep convolutional neural network
(CNN) to learn an end-to-end mapping between the low/high-resolution images, and
then Kim et al. [31] uses a very deep CNN achieving higher accuracy. To reconstruct or
restore realistic images, [32] proposed to use generative adversarial network (SRGAN)
and perceptual loss to introduce visually realistic textures [33, 34]. Then, [35] combined
the per-pixel loss and perceptual loss for Image super-resolution task. For medical image
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reconstruction, classical deep CNN structures such as U-net [10], Encoder-Decoder [36]
and some newly deep CNN structures [2, 37] have been used to learn a mapping from
preliminary reconstructed results to high-quality reconstruction results.

All of these deep learning-based methods rely on a black-box deep neural network
for mapping to the targeting high quality image. These network architectures consist of
commonly utilized network layers, such as convolution, ReLU, batch normalization, etc.
Obviously, these network layers are standard layers designed for general tasks, which
are not specifically designed considering the domain knowledge or imagining model in
image inverse problems. Due to this limitation, it relies on large training dataset and good
training tricks to learn the network to properly map input degraded image / samples to
the desired high quality images.

We naturally ask the following two questions. (1) Can we design deep network topol-
ogy in an interpretable way such that intermediate and final outputs are explainable? (2)
Can we embed the physical knowledge in the image inverse problems into the network
structure design, in order to merge the domain knowledge in the design of the network
structure?

1.3 Model meets deep learning: Model-driven deep learning

In recent years, there is a popular trend of research that deep network has been deeply
involved with the domain knowledge and mathematical models in image inverse prob-
lems [38–40]. On the one hand, these models have inspired us to design novel network
architectures with novel network layers and their connections, which are specifically de-
signed for image inverse problems. On the other hand, deep network has been intro-
duced to learn more powerful models, such as image prior or regularizers, for better
solving image inverse problems. This category of deep-learning methods, defined as
“model-driven deep learning”, has been firstly proposed by Xu and Sun in a perspective
paper of [41].

Model-driven deep learning [41] is a mixed data-driven and model-driven approach
combining their respective advantages. The methods reviewed in this paper are mainly
based on unfolding some optimization algorithms [38, 42, 43] or statistical inference al-
gorithms [44, 45] in image inverse problems. Recently, the ideas that take advantages of
model and deep learning are actively emerging in diverse fields. Basically, the main pro-
cedures of the model-driven deep learning in [41] are as follows. First, we formulate a
parameterized model family (model hypothesis space) based on objectives of tasks, domain
knowledge / priors. Then, iterative optimization or inference algorithm can be designed
according to the model family. The algorithm inherits the uncertainty such as the hyper-
parameters from model hypothesis space, forming an algorithm hypothesis space; finally,
the parametric algorithm is unfolded into a deep structure, which can be regarded as a
hierarchical nonlinear transformation, stacked by various mathematical operations in a
deep architecture, dubbed as model-driven deep network. The network parameters include
model parameters and algorithm parameters, which can be optimized in a data-driven
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manner through error back-propagation.

Model-driven deep learning approach [38, 42, 44, 46–48] can be dated back to the first
works that discriminatively learn the sparse codes in [42] and Markov random field
model parameters in [44]. In [42], the iterative thresholding algorithm for solving the
sparse codes has been unfolded as a deep architecture, for which the parameters can be
optimized to speed up the approximation of sparse codes in very few number of itera-
tions. Almost in parallel, Sun and Tappen [44] proposed to estimate statistical parameters
of MRF model as natural image prior by optimizing a bilayer model using a fixed number
of gradient descent iteration as approximation, and the gradient descents are unfolded
as a deep architecture, and MRF parameters are learned by back-propagation over this
deep architecture.

Since the popularity of deep learning after 2013, there are several typical model-
driven deep learning methods that significantly advanced the research in image inverse
problems. In fast MRI and compressive sensing, ADMM-Net [38] is a benchmarking
work that expands the iterative process of ADMM into a deep network to learn all the
model uncertainties such as regularizer, sparse transform, etc., which firstly bridge the
compressive sensing and deep learning in an elegant way. For image super-resolution,
deep plug-and-play method proposed in [40] extends existing plug-and-play framework
by variable splitting technique allowing for plugging any learnable super-resolver. The
approach in [43] replaces the proximal operator of regularizer by deep network for im-
age denoising [39]. In parallel to model-driven deep learning approach, some interesting
works that combine deep networks with differential equations [50, 51] and control sys-
tems [52, 53], bearing similarity with the basic idea of model-driven deep learning.

In the following sections, we will review typical works that combine model and deep
learning approach in image inverse problem, in the categories of optimization-inspired
deep learning and statistics-inspired deep learning in Sections 2 and 3 respectively. We
will finally conclude with discussions and perspectives on this research direction.

2 Optimization model-driven deep learning

The image inverse problems can be generally modeled as an energy function minimiza-
tion problem, and the optimal solution is the desired restored or reconstructed image. It
is commonly challenging to handcraft image prior / regularizer, and hyper-parameters
in model/algorithm. Moreover, the optimization algorithm commonly needs hundreds
of iterations to get the desired solution. To alleviate these challenges, model-driven deep
learning method based on algorithm unfolding enables to learn model and algorithm
uncertainties by data-driven approach and also speed-up the optimization using a fixed
number of iterations. Three typical works along this research direction are LISTA [42],
ADMM-Net [38], and learning proximal operators [43].
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2.1 LISTA: Iterative thresholding algorithm as a learnable network

Sparse coding is a fundamental tool in image representation with potential applications
in image restoration [16], classification [54], etc. Iterative thresholding-based optimiza-
tion algorithms, such as ISTA (iterative shrinkage-thresholding algorithm) [55], FIST (fast
iterative shrinkage-thresholding algorithm) [56] have been effective in optimizing this
sparse coding model. The landmarking paper [42] first proposed a discriminant learn-
ing method to optimize sparse coding model that can achieve good solution in a fixed
number of steps.

For an input vector x∈Rn and a given dictionary W∈Rn×m, which is over-complete,
i.e., m > n. The objective of sparse coding is to find the optimal sparse coding vector
α∗∈Rm as the minimum of energy function E(Z;x,W)= 1

2‖x−Wα‖2
2+λ‖α‖1. The iteration

of ISTA algorithm is

αk+1=hτ(Wex+Sαk), α0=0, k=1,··· ,K, (2.1)

where τ=λ/L, We =
1
LWT , S= I− 1

L WTW, L a constant as an upper bound on the largest
eigenvalue of WTW and function hτ is defined as an element-by-element soft threshold
function hτ(V)i= sign(Vi)(|Vi|−τ)+.

Then a parameterized non-linear sparse “encoder” can be designed to fast approxi-
mate the optimal sparse code. The basic idea is to map the iterative algorithm in Eq. (2.1)
to be a non-linear parametric deep structure as shown in Fig. 2.1 with fixed depth, in
which the parameters We,S can be trained to approximate the optimal sparse code. The
deep structure of the encoder will be expressed as α= f (X;Θ), where Θ represents the
set of trainable parameters in sparse encoder. The training objective of the encoder is to
minimize the loss function L(Θ)=∑i‖ f (xi;Θ)−α∗i ‖

2
2, where α∗i is the desired sparse codes

pre-computed. This learnable version of ISTA is dubbed LISTA.
The original sparse optimization algorithm ISTA commonly needs dozens or even

hundreds of iterations to obtain the optimal sparse codes, LISTA can approximate the
sparse codes only by iterating a few steps, which is much faster than ISTA. In term of ac-
curacy, using LISTA as sparse encoder, the approximate solution generated by the learned
LISTA can achieve similar accuracy for restoration or classification as the original ISTA.
Motivated by LISTA, Sprechmann et al. [57] proposed to extend the idea to the robust
principal component analysis (RPCA). Similar to the learned ISTA method, it builds the
architecture of the encoders based on the iterations of RPCA algorithms, which can ap-
proximate online RPCA in a very fast way.

Figure 1: Neural network architecture of LISTA [42] unfolded by ISTA algorithm.
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2.2 ADMM-Net: Model-driven compressive sensing network

The main purpose of the above learnable sparse coding methods is designed to acceler-
ate the optimization speed of the original sparse coding model. The deep compressive
sensing method, pioneered in ADMM-Net [38], can not only speed-up the optimization
speed, but also learn the uncertainties in regularization model, e.g., the transform domain
and sparse regularizers in the transformed domain, which can help solve the challenges
in designing a good image prior or regularizer term for image compressive sensing. It is
the first model-driven deep network for solving the compressive sensing problem in both
magnetic resonance imaging (MRI) and natural image compressive sensing. We will in-
troduce the ADMM-Net for compressive sensing MRI in this paper, and leave the details
on the extended version of ADMM-CSNet for general image compressive sensing in [3].

Let x∈CN be a reconstructed MRI image and y∈CN ′(N′< N) be subsampled data
in k-space (i.e., Fourier space). According to compressive sensing theory [58], CS-MRI
reconstruction can be generally modeled as:

x̂=argmin
x

{1

2
‖Ax−y‖2

2+
L

∑
l=1

λl g(Dlx)
}

, (2.2)

where A = PF is a measurement matrix, composed of sampling matrix P and Fourier
transform F. For the traditional compressive sensing method, the two challenging prob-
lems are, first how to design the transform Dl and sparsity regularizer g(·) in the trans-
form domain. Second, how to speed up the optimization procedures, which commonly
takes at least tens of iterations traditionally. ADMM-Net enables to adaptively learn the
transform, the sparse regularizer in the transform domain, and the hyper-parameters of
iterative optimization algorithm.

As far as we know, the alternating direction method of multipliers (ADMM) has be-
come the most widely used solver, which has been proven to be efficient and generally
applicable with convergence guarantee [59, 60]. For the Eq. (2.2), by introducing auxil-
iary variables z= {z1,z2,··· ,zL} to replace Dlx,l ∈ {1,··· ,L}, the augmented Lagrangian
function can be obtained. Then variables can be split into three subgroups, which can be
alternately optimized by solving three simple subproblems:





x(n)=FT(PTP+∑
l

ρl FDT
l DlF

T)−1
[

PTy+∑
l

ρl FDT
l (z

(n−1)
l +β

(n−1)
l )

]
,

z
(n)
l =S

(
Dlx

(n)+β
(n−1)
l ;

λl

ρl

)
,

β
(n)
l =β

(n−1)
l +ηl(Dlx

(n)−z
(n)
l ),

(2.3)

where βl is a penalty coefficient, S(·) is a non-linear proximal operator related to g(·) and
ηl is the update rate. Eq. (2.3) is the ADMM iterations for solving x̂.

Then ADMM algorithm is unfolded into a T-layer deep neural network (ADMM-
Net). According to the corresponding formula, the topology of ADMM-Net is shown
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Figure 2: ADMM-Net [38] takes sampled k-space data and outputs reconstructed MRI image.

Figure 3: An example of CS-MRI [38]. From top to bottom is the comparison of 20% and 30% sampling rates
respectively. From left to right is the comparison of ADMM net [38], RecPF [61], PANO [62] and FDLCP [63].

in Fig. 2, which is composed of T stages. Each stage contains four network layers: re-

construction layer X(n) : X(n) = x(n), convolution layer C(n) : C
(n)
l = D

(n)
l x(n), nonlinear

transformation layer Z(n) : Z
(n)
l = z

(n)
l , multiplier update layer M(n) : M

(n)
l = β

(n)
l , each

of which is explainable and with mathematical operations related to CS-MRI, compared
with standard network layers.

Fig. 3 shows the visual comparisons of 20% and 30% sampling rates in different meth-
ods on the brain data. It clearly shows that the ADMM network can achieve better recon-
struction quality and preserve the fine image details without obvious artifacts.

Inspired by ADMM-Net, the conventional iterative algorithm, D-AMP, has been un-
rolled into the Learned D-AMP (LDAMP) in [64] achieving higher accuracy and shorter
running time. On the other hand, based on ADMM network, differentiable Linearized
ADMM, a learning-based method, is proposed in [65] for solving the constrained opti-
mization problem.
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2.3 Learning proximal operators by deep network

A more general approach for learning prior/regularizer in image inverse problem is to
directly substitute its proximal operator by a deep network in a variable-splitting iterative
optimization algorithm. For a general image inverse problem solving:

x̂=argmin
x

{1

2
‖Ax−y‖2

2+ f (x)
}

. (2.4)

If we use splitting-based optimization algorithm, e.g., half-quadratic splitting [66] or
ADMM, by introducing an auxiliary variable z to substitute x in Eq. (2.4), the sub-problem
for optimizing z in iterative optimization can be derived by the proximal operator of reg-
ularizer f (·)

v∗= proxλ f (x)=argmin
v

f (v)+
1

2λ
‖x−v‖2. (2.5)

Obviously, the proximal operator is determined by the regularizer f (·), acting as a reg-
ularization on the solution, i.e., reconstructed/restored image. Inspired by the idea that
denoising algorithm can be interpreted as a proximal operator, [67, 68] proposed to re-
place the proximal operator by denoising methods such as NLM [69] or BM3D [70]. With
the popularity of deep neural networks, Meinhardt et al. [39] proposed to replace the
proximal operator of the regularization by a denoising neural network in the primal-dual
hybrid gradient (PDHG) method.

Yang and Sun [71] proposed a proximal dehaze-net for single image dehazing by
learning the proximal operators of dark channel prior and transmission map prior using
convolutional neural networks. Based on the haze imaging model [72–75], it uses dark
channel [73] and transmission priors [72] to formulate single image dehazing as an energy
model:

E(Q,T)=
α

2 ∑
c∈{r,g,b}

‖Qc◦T+1−T−Pc‖2
F+

β

2
‖Qdk◦T+1−T−Pdk‖2

F+ f (T)+g(Qdk), (2.6)

where P= I/A and Q= J/A represent the scaled hazy image and latent haze-free image
respectively, T is the media transmission, ∗c is a color channel, and ∗dk are dark channels,
and f ,g are regularization terms respectively on transmission map and dark channel.

Using half-quadratic splitting (HQS) algorithm to solve Eq. (2.6) by introducing an
auxiliary variable U to substitute the dark channel Qdk of latent haze-free image, the
augmented energy function can be derived. Then, minimizing the augmented energy
function can be achieved by solving three sub-problems for alternately updating U, T
and Q. Given Qn−1 and Tn−1 at iteration n−1, then U, T and Q can be updated se-

quentially as Un = prox 1
bn

g(Ûn), Tn = prox 1
cn

f (T̂n) and ~Qn =
α(~P+~Tn−1)◦~Tn+γDT~Un

α~Tn◦~Tn+γdiag(DTD)
. Instead

of using hand-designed regularizations, deep CNNs are used to learn proximal oper-
ators prox 1

bn
f and prox 1

cn
f for updating Un and Tn in each stage n: Un ,D-Net(Ûn,P),
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Figure 4: Proximal Dehaze-Net [71]. (a),(b) illustrate the deep network architecture and each network stage
respectively.

Figure 5: Dehazing results of Proximal Dehaze-Net [71] on two examples.

Tn , GIF-Block(T-Net(T̂n,P)). The structure of the Proximal Dehaze-Net is shown in
Fig. 4. The training loss is defined as the sum of pixel-wise L1 distances between the
outputs of proximal dehaze-net {Q∗,T∗,U∗} and the ground truths {Qgt,Tgt,Ugt}. Please
see [71] for technical details, and some dehazing results are shown in Fig. 5.

Learning regularizer by implicitly learning its proximal operator using deep network
is an effective way for learning to regularize in image inverse problems. First, the deep
network for proximal operator is obviously more powerful than the hand-crafted image
regularizer such as total variation, sparse regularizer, etc. Second, the proximal oper-
ator can be specifically learned end-to-end for specific task by unfolding the iterative
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optimization to be a deep network with the network substituting proximal operator as a
building block of the whole network.

2.4 Plug-and-play deep networks in optimization framework

Plug-and-play (PnP) is an another flexible framework to bridge iterative optimization al-
gorithm with deep networks/related models (e.g., BM3D). Different to the end-to-end
training framework in the above optimization model inspired deep networks, the PnP
approach plugs the existing algorithms or pre-trained deep networks into the iterative
optimization algorithm to substitute some mappings, e.g., proximal operator. This ap-
proach is simple, but the plugged networks/models are not end-to-end trained in a prin-
cipled way.

An example of the early PnP method is the Plug-and-Play ADMM (PnP-ADMM) pro-
posed in [67], which enabled to use existing denoising algorithms as priors / regularizers
in ADMM model. Since then, PnP has been studied extensively with great success. A pa-
rameterized PnP-ADMM was proposed in [76]. It used a deep learning-based strategy for
model-based iterative reconstruction (MBIR) to simultaneously address the challenges in
prior design and MBIR parameter selection. Based on the Plug-and-Play proximal gra-
dient method (PnP-PGM), [77] used the plug-and-play prior to transform denoisers to
super-resolution solvers. [40] further proposed a deep plug-and-play super-resolution
framework to solve single image super-resolution (SISR), and [78] developed a new al-
gorithm based on plug-and-play prior for solving nonlinear imaging inverse problems.
For visual tracking task, [79] presented Plug-and-Play Correlation Filters (PPCF) that it-
eratively integrate different off-the-shelf CF trackers.

The PnP framework, as an extension of traditional optimization framework, has at-
tracted attentions in theoretical analysis of its convergence. Sreehari et al. [80] studied
the sufficient conditions of denoising algorithms to ensure the convergence of PnP ap-
proach. Chan et al. [81] proved that the PnP-ADMM with a bounded denoiser converges
to a fixed point under a continuation scheme. Theoretical convergence analyses of PnP-
PGM and PnP-ADMM were provided in [82] and [83]. Xie et al. [84] proved that there
exists a set of learnable parameters for Differentiable Linearized ADMM generating glob-
ally converged solutions. Recently, Ryu et al. [85] theoretically analyzed convergence of
PnP-PGM and PnP-ADMM under a certain Lipschitz condition on the denoisers. It also
proposed spectral normalization for training deep learning-based denoisers to satisfy the
Lipschitz condition.

3 Statistical model-driven deep learning

The above optimization models usually take unknown variables as deterministic vari-
ables without considering their uncertainties. The statistical models instead use sta-
tistical distribution to describe the unknown variables. They commonly rely on maxi-
mum likelihood, variational inference, or EM (Expectation Maximization) algorithm to
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estimate the parameters of distributions of unknown variables. In applications such
as computer vision and speech recognition, Markov random field [86–88], conditional
random field [23], and corresponding EM algorithm [89] and variational inference algo-
rithms [90] are popular statistical models and algorithms for modeling statistical depen-
dency of high-dimensional random variables. In recent years, statistical models have
been extensively combined with deep learning, deriving novel statistical model-driven
deep learning methods [44, 45].

3.1 Markov random field model inspired deep network

Markov random field model (MRF) provides an effective framework for establishing the
statistical distribution of images or signals. The Markov Random Field (MRF) model can
be defined as a graph G=<V,E>, where V represents the node set of graph, X= {xv},
v∈V represents the random field defined on the node set, and E represents the edges
connecting graph nodes. In an early work published in 2011, Sun and Tappen [44] pro-
posed a non-local range MRF (NLR-MRF) statistical model as a prior of natural image,
and its corresponding discriminative parameter learning method can be taken as a statis-
tical model-driven deep learning method. The statistical model for NLR-MRF is defined
as

p(x;Θ)=
1

Z(Θ) ∏
c∈C

N

∏
i=1

φ( fi∗xc;Θ), (3.1)

where fi∗ denotes the non-local range convolution using non-local range filters fi, φ is the
potential function defined based on Gaussian mixture model or student-T distribution,
modeling the heavy-detailed distribution of natural images in transform domain, please
refer to [44] for details of the model. A challenge is how to estimate the model parameters
Θ.

Given the model in Eq. (3.1) as prior, the reconstructed image is usually derived by
Maximum A Posteriori (MAP) estimation

x∗=argmin
x
{E(x|y,Θ)=Edata(y|x)+Eprior(x;Θ)}, (3.2)

where x,y respectively denote the high-quality image to recover and degraded image,
Eprior is derived from the prior distribution of NLR-MRF

Eprior(x;Θ)=−∑
p

∑
i

logφ((Fix)p;Θ). (3.3)

The parameters Θ are learned by minimizing the loss function

Θ∗=argmin
Θ

L(xK(y,Θ),t), where xK(y,Θ)=GradDescK{E(x|y,Θ)}, (3.4)

and t is ground-truth image to recover. Using gradient descent algorithm to minimize
E(x|y,Θ) and taking φ as Student-t distribution, the n-th gradient descent formula for
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Figure 6: Deep network architecture unfolded by NLR-MRF model [44].

Figure 7: Comparison of denoising results of different algorithms [44]. (a) Noise image (PSNR= 25). (b)
FOE (PSNR= 28.67). (c) ARF (PSNR= 28.94). (d) NLR-MRF [44] (PSNR= 29.39). (E) BLS-GSM [92]
(PSNR=29.03). (f) KSVD [17] (PSNR=29.05). (g) BM3D [70] (PSNR=29.60).

GradDescK :

xn+1=(1−η)xn+ηy−η
N

∑
i=1

αiF
N
i WiFix

n, n=0,··· ,K−1, (3.5)

where x0 = y,FN
i WiFix can be decomposed into convolution, nonlinear transformation

and convolution operation. Please see [44] for definitions of Wi. Then, as shown in Fig. 6,
the K steps of gradient descent can be unfolded into a K-stage deep network, and all
the unknown parameters of model in Eq. (3.1) are parameters of this deep network to be
learned by end-to-end training. Fig. 7 shows typical image denoising results. Compared
with the classical MRF model (such as FOE [22], ARF [91]), NLR-MRF has better denois-
ing results. The experiments also show that improving the number of network stages will
improve the image denoising performance, but saturates after a fixed number of stages,
e.g., 4 stages.

3.2 Conditional random field model inspired deep network

Zheng et al. [45] unfold the iterative process of mean-field inference algorithm of con-
ditional random field (CRF) model into a deep neural network. In image semantic seg-
mentation, given the observed image I, CRF models the class label of image pixels as a
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Algorithm 1 Mean-field method for solving CRF [45]

Qi←
1

Zi
exp(Ui(l)) for all i ⊲ Initialization

while not converged do

Q̃
(m)
i (l)←∑j 6=i k

m(fi,fj)Qj(l) for all m ⊲ Message passing

Q̌i(l)←∑m w(m)Q̃
(m)
i (l) ⊲ Linear combination of message passing outputs

Q̂i(l)←∑l′∈Lµ(l,l′)Q̌i(l) ⊲ Compatibility transform
Qi(l)←Ui(l)−Q̂i(l) ⊲ Adding unary values
Exponentiate and normalize Qi for all i ⊲ Normalizing

end while

Figure 8: Deep Network Architecture unfolded by the mean-field [45].

random field with distribution

P(X=x|I)=
1

Z(I)
exp(−E(x|I)), where E(x)=∑

i

Ψu(xi)+∑
j<i

Ψp(xi,xj), (3.6)

which is conditioned on the observed image I, and Ψu and Ψp are unary and pairwise
terms [45]. This optimization problem is a combinatorial optimization problem. To fa-
cilitate the fast computation, the CRF distribution P(X) can be approximated by the
mean field, which can be written as the product of an independent marginal distribution
Q(x)=∏i Qi(xi). Then the iterative algorithm of approximate mean field inference can
be used to build a deep RNN (recurrent neural network). The iteration of the mean field
algorithm in Algorithm 1 consists of the following steps of message passing, weighting,
compatibility transform, unary addition and normalization. Each step can be formulated
as a stack of common CNN layers. As shown in Fig. 8, the iterative process of the mean
field algorithm is unfolded into a deep RNN, dubbed CRF-RNN.

As an RNN, the parameters of Algorithm 1 can be trained by back propagation method.
These parameters include weighted parameter w(m), compatibility matrix µ(l,l′). CRF-
RNN can be applied to semantic segmentation to smooth the segmentation probabilistic
maps, which can be taken as a post processing restoration step [45]. The CRF-RNN can be
connected to the end of a segmentation network and takes the segmentation confidence
as input, and outputs the restored smooth segmentation probability maps. Specifically,
using the FCN network of [93] to be concatenated with CRF-RNN, Fig. 9 shows some
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Figure 9: Segmentation results of CRF-RNN [45].

visual results. It can be observed that segmentation results after adding CRF-RNN are
better aligned with object boundaries.

3.3 Summary

This section mainly introduces the statistical model-driven deep learning methods in-
spired by Markov random field model and conditional random field model. These two
models bridges the gaps between statistical parameter estimation/statistical inference of
MRF/CRF with the deep learning approach. This enables to learn statistical model pa-
rameters in a discriminative data-driven way, in coupling with the unfolded iterative in-
ference as a deep network. This idea is obviously versatile and can be generalized to more
general statistical models. For example, in [94], the spatial mixed distribution model was
proposed, and its EM algorithm is used to design a deep network for clustering different
objects.

4 Other related research

The above mentioned model-driven deep learning networks are based on statistical and
optimization models. Obviously, there are many different areas such as control, physics
based on partial differential equations, that mathematical models play essential roles.
Bridging mathematical models in different areas and deep learning in a model-driven
approach has been widely investigated in recent years.
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Deep learning and PDE. Deep learning has been a new tool or source of inspiration
for the research of partial differential equation in recent years. First, the data-driven
deep learning method can be used to learn the formulation of PDEs. For example, PDEs
have been learned through the data-driven deep learning approach in the pioneering
works [50, 95]. Second, the numerical solution of high-dimensional PDEs can be solved
by deep neural network. For example, the PDEs are modeled as backward stochastic
differential equations in [51], and the gradient of unknown solution is approximated by
deep neural network. Third, PDEs or dynamical systems can be used to explain or inspire
the design of new deep learning models. For example, the research in [96] established
the relationship between the differential dynamic system and the deep residual network,
which provides a new theoretical tool for the analysis of deep neural network. Based
on Feynman KAC formula, the ensemble deep residual network with better robustness
was designed in [97]. Based on nonlinear reaction diffusion equation, a flexible learning
framework, i.e., Trainable Nonlinear Reaction Diffusion (TNRD), was proposed in [49]
and all its parameters are learned from training data by learning-based approach. The
above research progresses show that artificial intelligence algorithm is becoming a new
tool for modeling or computations in the field of applied mathematics. At the same time,
differential equation has also become a new idea for analyzing and designing novel deep
neural network. Differential equation and deep learning are merging interactively and
promoting each other.

Deep learning and control. The modern control theory in the control research is
based on linear system, nonlinear system, time-varying system, stochastic control sys-
tem, etc, which has sound fundamentals in mathematical modeling and theoretical anal-
ysis. With the rapid development of robot and autonomous vehicle, data plays a more
and more important role in control. How to combine model-driven control method and
data-driven learning method has become a research frontier in control research [98]. Typ-
ical developments include the combination of control theory models with the data-driven
reinforcement learning methods [52,53] or deep learning-based dynamic system [99,100].
The research in [53] constructs the benchmark problem set of deep reinforcement learn-
ing for continuous control, including cart-pole swing-up, 3D humanoid locomotion etc.,
which provides platform for the research of reinforcement learning in control. A neural
Lyapunov control method proposed in [99] learn the controller and Lyapunov function
through deep learning methods to ensure the stability of the nonlinear system and obtain
a larger attractive field compared with other existing methods. The model-based optimal
control and optimal system are also helpful to analyze and understand data-driven deep
learning methods. For example, the paper [101] reviewed and discussed how to establish
deep learning theory from the perspective of optimal control and dynamic system. In
summary, the combination of deep learning and control models is an important research
direction in robot control, autonomous driving, flight control and other related fields. It
is expected to overcome the shortcomings of the classical model-based control theory in
practice and the shortcomings of the pure data-driven reinforcement learning method
lacking model and theoretical guidance for designing strategies, trajectories, etc.
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5 Discussion and perspective

This paper reviewed the model-driven deep learning in image inverse problems, includ-
ing the optimization model-driven deep learning and statistical model-driven deep learn-
ing, and further introduced the closely related work of deep learning methods in PDE,
control, etc. The model-driven deep learning method establishes a bridge between tra-
ditional mathematical modeling and modern data-driven learning, and brings the artifi-
cial intelligence techniques into traditional mathematical models in diverse applications
such as imaging science, physics, control and other fields. It has potential to enforce the
modern deep learning approach to gradually become a basic tool for solving natural and
social science problems. However, to achieve these above expectations, researchers on
model-driven deep learning need to solve some theoretical, methodological, and appli-
cation challenges.

Theoretical analysis of model-driven deep learning. Although model-driven deep
learning integrates mathematical modeling of domain knowledge and data-driven learn-
ing in a principled way, it is interesting to theoretically analyze its advantages from the
learning theory perspective by analyzing the hypothetical function space deduced by
model-driven deep network. For example, compared with the standard deep neural net-
work, are the model-driven deep networks relying on fewer parameters and less data to
achieve the same or higher approximation and generalization ability? It is necessary to
systematically analyze and compare the basic mathematical operations of model-driven
and standard deep networks in a compositional function space. Intuitively, model-driven
deep learning should be advantageous because the mathematical operations in its net-
work architectures are derived by directly modeling the task itself, therefore should be
more efficient to be learned to achieve the desired solution.

Investigation of model-driven deep learning in more diverse research fields. Nowa-
days, deep learning has been in a trend of becoming tools in various fields. In addition
to the above mentioned applications such as imaging sciences, control, physics, model-
driven deep learning should be more extendable to more extensive fields, such as molec-
ular chemistry, astronomy, mechanics, geological sciences, etc., which deserve us to in-
vestigate. But in different applications, how to leverage domain knowledge to develop
new model-driven deep learning approach is a cutting-edge and challenging research di-
rection. For example, in geophysics for the inverse problem of petroleum exploration,
it has specific physical domain knowledge. The modeling of these domain knowledge
and incorporation of corresponding models to derive novel model-driven deep learning
method is of great importance in geophysical applications.

Model-driven deep learning in an open and dynamic environment. In the image in-
verse problems, the model-driven deep learning is modeled in a static perspective with-
out considering the dynamic environmental factors in practical applications. In many ap-
plications, such as communications and autonomous driving, the external environment
is constantly changing and the input data are online and dynamic. In such open and dy-
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namic environment, especially for control problem, it is a challenging task to combine the
physical model and sequentially supplied data in the context of complex environment to
design effective model-driven deep learning models.

In a summary, the interaction between modeling and deep learning is a promising
research direction with the popularity of big data and artificial intelligence (AI). On the
one hand, the models may inspire, analyze, stabilize, and even reformulate the deep
network architectures and related theories. On the other hand, the deep network and
AI techniques may revolutionize the applied mathematics with topics including inverse
problems, imaging sciences, optimization, control, etc.
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and Michael Unser. Dynamic PET reconstruction using wavelet regularization with
adapted basis functions. IEEE Transactions on Medical Imaging, 27(7):943–959, 2008.

[16] Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse representation for color image
restoration. IEEE Transactions on Image Processing, 17(1):53–69, 2008.

[17] Michael Elad and Michal Aharon. Image denoising via sparse and redundant represen-
tations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745,
2006.

[18] Jianchao Yang, John Wright, Thomas S. Huang, and Yi Ma. Image super-resolution as
sparse representation of raw image patches. Computer Vision and Pattern Recognition, pages
1–8, 2008.

[19] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning
for sparse coding. International Conference on Machine Learning, pages 689–696, 2009.

[20] Weisheng Dong, Lei Zhang, and Guangming Shi. Centralized sparse representation for
image restoration. International Conference on Computer Vision, pages 1259–1266, 2011.

[21] Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole
image restoration. International Conference on Computer Vision, pages 479–486, 2011.

[22] Stefan Roth and Michael J. Black. Fields of experts: a framework for learning image priors.
Computer Vision and Pattern Recognition, 2:860–867, 2005.

[23] John Lafferty, Andrew Mccallum, and Fernando Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. International Conference on
Machine Learning, pages 282–289, 2001.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521:436–444,
2015.

[25] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 815–823, 2015.

[26] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv: Computation and Language, 2016.

[27] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, et al. Mastering the game of Go with deep neural networks and tree search.
Nature, 529:484–489, 2016.

[28] Varun Gulshan, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu, Arunachalam
Narayanaswamy, et al. Development and validation of a deep learning algorithm for detec-
tion of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical
Association, 316 22:2402–2410, 2016.
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