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Abstract. This paper is concerned with numerical solutions for the Allen-Cahn equa-
tion with standard double well potential and periodic boundary conditions. Surpris-
ingly it is found that using standard numerical discretizations with high precision
computational solutions may converge to completely incorrect steady states. This hap-
pens for very smooth initial data and state-of-the-art algorithms. We analyze this phe-
nomenon and showcase the resolution of this problem by a new symmetry-preserving
filter technique. We develop a new theoretical framework and rigorously prove the
convergence to steady states for the filtered solutions.
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1 Introduction

A curious experiment. Consider the following 1D Allen–Cahn on the periodic torus
T=[−π,π]:

{
∂tu=κ2∂xxu− f (u),

u
∣∣
t=0

=u0,
(1.1)
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(a) (b)

Figure 1: Dynamics of the Allen-Cahn equation using the first-order implicit-explicit scheme with different
discretization parameters. (a): κ=1, Np =128 and τ=0.01, and (b): κ=1, Np =4096 and τ=10−5.

where f (u)=u3−u corresponds to the usual double-well potential, κ2
>0 is the diffusion

coefficient. The scalar function u : T→R represents the concentration of a phase in an
alloy and typically has values in the physical range [−1,1]. There is by now an extensive
literature on the theoretical analysis and numerical simulation of the Allen-Cahn equa-
tion and related phase field models (cf. [1–5, 7, 8, 14]). For the system (1.1) we take the
initial data u0 as an odd function of x (here we tacitly “lift” the periodic function u to
be defined on the whole real axis so that oddness can be defined in the usual way). For
example, one can take u0(x)=sin(x). Denote

u∞(x)= lim
t→∞

u(x,t). (1.2)

Since u0 is odd and smooth, it is clear that the odd symmetry should be preserved for
all time. In particular, the final state u∞ must be a periodic odd function of x. However
to our surprise, standard numerical experiments show that this parity property may be
lost in not very long time simulations. For example, by using the finite difference method
with Np =128 nodes for space discretization and the first-order implicit-explicit method
with time step τ=0.01 for time discretization, we find that u tends to±1 when t is suitably
large (see the left-hand side of Fig. 1). Obviously, ±1 are not the correct steady states as
the oddness is not preserved.

To check the fidelity of the numerical scheme and rule out the issues connected with
inaccurate numerical discretization, we first test larger N=4096 and smaller τ=10−5. It
turns out that for this case, the oddness is preserved up to around t≈32, after which the
solution u lost its oddness apparently and tends to 1 quickly. See the right-hand side of
Fig. 1.
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Figure 2: Dynamics of the Allen-Cahn equation using different numerical schemes (κ=1, Np =128, τ=0.01):
implicit Euler method [16], the first-order IMEX method, the second-order operator splitting methods [6], BDF2
extrapolation method [15], the first- and second-order scalar auxiliary variable methods [12].

How about other numerical schemes? We test different first and second order (in time)
numerical schemes to find that all these methods suffer the same non-physical phe-
nomenon, see Fig. 2. This appears to be quite a serious issue, since it shows that all
these standard numerical implementations may not be credible in not very long time
simulations.

Outline of the paper. The purpose of this work is to rectify this issue for some special
initial conditions by introducing a symmetry-preserving filter. The importance of this
filter is that it eliminates the aforementioned unwanted projections into the unstable di-
rections at each iteration. In the simplest situation of odd initial data such as sinx, we
dynamically force all the Fourier coefficient corresponding to cosine Fourier modes of
the numerical solution to remain strictly zero after each iteration. For initial data such as
sin(Lx) with L≥2 an integer, one can check that the spectral gap L is preserved in time,
and our proposed filter forces the Fourier coefficients to retain the spectral gap as well
as the symmetry conditions. Furthermore, we rigorously prove that the filtered solution
will converge to the true steady state.

The rest of this paper is organized as follows. In Section 2 we classify the steady
states and analyze their profiles. In Sections 3 an 4 we analyze the symmetry breaking
phenomenon and show how the filtering approach can resolve this issue. In Section 5, by
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providing more numerical examples we discuss in more details about various scenarios
where the parity can be preserved or lost when the filter is in effect or turned off. It will
demonstrated that although the algorithm and analysis are provided for 1D Allen-Cahn
the effectiveness of the filtering technique is observed for the 2D Allen-Cahn equation
and 2D Cahn-Hilliard equation. In the last section we give some concluding remarks.

2 Properties of steady states

We consider the steady state solution of (1.1) which satisfies

κ2u′′+u−u3=0, x∈T. (2.1)

We first discuss a special class of steady states, called odd zero-up ground states.

Definition 2.1 (Odd zero-up ground state). For any 0< κ<1, Uκ is an odd zero-up ground
state of (2.1) if Uκ is odd, U′κ(x)>0 on

[
0, π

2

)
, and U′κ(x)<0 on

(
π
2 ,π

]
.

To fix the notation, let us recall the energy functional associated with (1.1):

E(u)=
∫

T

(
κ2

2
(∂xu)2+

1

4
(1−u2)2

)
dx. (2.2)

Remark 2.1. By a result from [10], for each 0<κ<1 and excluding the trivial states u≡±1,
Uκ has the lowest energy among the steady state solutions, namely,

E
(0)
κ = inf

u∈F
E(u)=E(Uκ), (2.3)

where the class F of admissible functions is given by

F={u | u∈H1(T) solves (2.1) and |u|<1 for x∈T}. (2.4)

Furthermore, if v∈F attains Eκ , then for some x0∈T, we have v(x)=±Uκ(x−x0). Note
that the constraint |u|<1 in (2.4) is to exclude the trivial minimizers u=±1. Another way
is to impose symmetry. For example Uκ or −Uκ are the only minimizers amongst all odd
2π-periodic functions.

It is possible to classify all steady states to (2.1) by using Uκ . For any 0<κ<1, define
mκ≥1 as the unique integer such that

1

mκ+1
≤κ<

1

mκ
. (2.5)

Theorem 2.1 ([10]). Let 0 < κ < 1. If u is a bounded solution to (2.1), then only one of the
following holds.
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(1) u≡±1 or u≡0.

(2) u=±Ujκ(jx+c), for some integer j∈{1,2,··· ,mκ} and some constant c. Here note that
0< jκ<1 by (2.5) and Ujκ(j·) can be viewed as a rescaled function of Ujκ(·), where u(·)=
Ujκ(·) corresponds to the odd zero-up ground state of the equation

j2κ2u′′+u−u3=0, x∈T. (2.6)

Remark 2.2. For κ≥1, it can be shown (see [10]) that if u is a bounded steady state solution
to (2.1), then u≡0 or ±1.

Roughly speaking, the significance of the odd zero-up ground state Uκ introduced in
Definition 2.1 is that, the set {Uκ}0<κ<1 gives a clean description of all possible bounded
steady states of (2.1). Indeed by Theorem 2.1, any other bounded steady state must either
be 0, ±1 or a rescaled, translated copy from the catalogue {Uκ}0<κ<1. Therefore it is of
fundamental importance to study the odd zero-up ground states {Uκ}0<κ<1.

We now characterize the detailed profile of the odd zero-up ground state of (2.1).
Multiplying (2.1) (now u is replaced by Uκ) by U′κ, integrating the resulting equation
from π

2 to x, and using U′κ(
π
2 )=0 (a fact from the definition 2.1), we have

(U′κ)
2=

1

2κ2

(
(U2

κ−1)2−(N2
κ−1)2

)
, (2.7)

where Nκ :=Uκ(
π
2 ) is the maximum of Uκ.

By (2.2) and (2.7), the ground state energy E
(0)
κ =E(Uκ) can be rewritten as

E
(0)
κ =

∫

T

(1

2
(U2

κ(x)−1)2− 1

4
(N2

κ−1)2
)

dx. (2.8)

Since Uκ is monotonically increasing on (0, π
2 ), we have

U′κ(x)=
1√
2κ

√
(U2

κ−1)2−(N2
κ−1)2, x∈ (0,π/2), (2.9)

with Uκ(0)=0. This yields

g(Nκ) :=
∫ Nκ

0

1√
(u2−1)2−(1−N2

κ )
2

du=
∫ π

2

0

1√
2−N2

κ (1+sin2θ)
dθ=

π

2
√

2κ
. (2.10)

Note that g(Nk) is monotonically increasing on [0,1),

g(0)=
π

2
√

2
, g(Nκ)→∞ as Nκ→1.

From (2.10), we derive the constraint

0<κ<1. (2.11)

We have the following monotonicity properties of Nκ and Uκ w.r.t. κ.
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Theorem 2.2 (Monotonicity of Uκ and E
(0)
κ ). If 0<κ1 <κ2<1, then

(1) the monotonicity of Uκ w.r.t. κ holds point-wisely

Uκ1
(x)>Uκ2(x), x∈ (0,π/2]; (2.12)

(2) the monotonicity of E
(0)
κ w.r.t. κ also holds

E
(0)
κ1

<E
(0)
κ2

. (2.13)

Moreover,

lim
κ→0

E
(0)
κ

κ
=

4

3

√
2. (2.14)

Proof. The proof of monotonicity can be found in [10]. Here we only show the proof of
(2.14). For 0<κ≪1, it can be proved (see [10]) that Uκ satisfies

0≤ tanh

(
x√
2κ

)
−Uκ(x)≤exp

(
− c

κ

)
, ∀0≤ x≤ π

2
, (2.15)

where c>0 is an absolute constant. Then (2.14) follows from a simple computation

lim
κ→0

E
(0)
κ

κ
=
√

2
∫

R

(tanh2y−1)2dy=
√

2
∫

R

(1−tanh2y)d(tanhy)=
4

3

√
2. (2.16)

This completes the proof of (2.14).

The monotonicity of ground state energy w.r.t. κ, the limit property (2.14), and the
monotonicity of Uκ w.r.t. κ, are verified numerically in Fig. 3.

Note that instead of solving the Allen-Cahn dynamics it is possible to compute the
profile of the aforementioned ground state Uκ in two straightforward ways, namely, de-
termine Nκ via (2.10) by using Newton’s iteration method, or solve the ODE (2.9) de-
fined on [0, π

2 ] by using some standard ODE solvers such as the second-order predictor-
corrector method.

3 Symmetry breaking

The following sharp convergence result is proved in [10].

Theorem 3.1 (Convergence for single bump initial data). Let 0< κ<1. Assume the initial
data u0 : [−π,π]→R is odd, 2π-periodic, and E(u0)≤ π

2 . Suppose u0 is monotonically increasing
on [0, π

2 ] and u0(π−x)=u0(x) for all π
2 ≤ x≤π. Then u(x,t)→Uκ as t→∞.

In particular it follows from Theorem 3.1 that the solution corresponding to u0(x)=
sin(x) should converge to a nontrivial odd steady state. However, quite surprisingly, the
following numerical computation shows that this is not always the case.
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Figure 3: E
(0)
κ w.r.t. κ∈ [0,1] and the ground state Uκ for different κ.

3.1 A prototypical example on loss of parity

We solve the following Allen-Cahn dynamics

{
∂tu=κ2∂xxu− f (u),

u0=sin(x),
(3.1)

using the first-order implicit-explicit scheme

un+1−un

τ
=κ2∂xxun+1− f (un), n≥0, (3.2)

with κ= 0.9 and time step τ = 0.01. More precisely, we use the pseudo-spectral method
(see, e.g., [11, 13] with N = 256 Fourier modes for space discretization. The computed
steady state and its energy evolution is illustrated in Fig. 4. It is observed that the oddness
is lost gradually in time and the computed steady state is completely incorrect.

3.2 Amplification of machine error

We suspect that the above unreasonable symmetry-breaking phenomenon is connected
with the machine truncation error. To understand this, one can consider a simple testing
ODE

u′(t)=u(t), u0=10−15≈0, (3.3)

where u0≪ 1 is regarded as the small machine error. Clearly, the solution is u(t) =
u0exp(t) so that u(35)≈ 1.5860> 1. However, if u0 = 0 rigorously, u(t)≡ 0. This means
that the initial machine error is amplified significantly after t>35.
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Figure 4: Wrong steady state (red curves) for (3.1) computed by the first-order IMEX scheme with κ = 0.9,
τ=0.01, and N=256.

Figure 5: Initial data of u0=sin(8x) at zero points respectively on [−π,π] and [0,2π], computed by MATLAB.
Symmetries at (0,0) (left) and (π,0) (right) are not preserved due to machine errors.

A further investigation shows that the data stored by computer can be easily “pol-

luted”, even at time t=0. For example, if we input u0(x)=sin(8x), we have u0(
π j
8 )=0 for

all integers j. However, standard software such as MATLAB gives nonzero values due
to machine errors. As a consequence, the oddness is already violated at time t= 0. See
Fig. 5 for a graphical illustration. This suggests that the values of u may be contaminated
by machine round-off errors at the very beginning of simulation.

Even if we rectify the initial data to be odd (by numerically forcing u0 to be odd), the
oddness can not be ensured after a few iterations, due to the gradual accumulation of
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Figure 6: Amplification of machine error of the testing ODE (3.3) (left); an example of the evolution of u(0,t)
for the Allen-Cahn equation (1.1) with odd initial condition (right).

machine error. This issue is serious, since it leads to convergence to the incorrect steady
state and thereby destroys the fidelity of the numerical simulation in the longer run. In
a deeper way the problem of the spurious growth of u(0,t) (see Fig. 6) is connected with
the amplification of projections into the exponentially-fast directions (such as projections
into the steady state functions ±1 for the Allen-Cahn case) which can be summarized in
the following abstract diagram in Fig. 7.

Figure 7: Schematic diagram of the amplification of machine error.

4 Our filtered approach

4.1 A new symmetry-preserving filter

It is known that u(x,t) should preserve the oddness for all t if the initial condition u0 is
odd. However, standard numerical methods may converge to the spurious steady states
in long time due to the accumulation of machine error. To resolve this issue we introduce
a new symmetry-preserving filter which amounts to forcing the parity of the solution at
every iteration step. Assume the initial data u0 is odd and has 2π as its minimal period.
To preserve the oddness and the invariance of Fourier sine series, we propose a new
Fourier filter imposing the zeroth Fourier coefficient to be zero and the real part of all
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Figure 8: Correct steady state (red curves) for problem (3.1) computed by the filtered first-order IMEX scheme
with κ=0.9, τ=0.01, and N=256.

Fourier coefficients to remain zero, namely, ∀n≥0,

ûn(k=0)=0; (4.1a)

Re(ûn(k))=0. (4.1b)

One should note that in a typical MATLAB implementation, for (4.1) to hold, we just
need to use the command

ûn(k)= Im(ûn(k))∗1i (4.2)

in each iteration. Fig. 8 illustrates the steady state computed with this Fourier filter re-
spectively, where u0 = sin(x),κ = 0.9, T = 100. Compared to the result without filter in
Fig. 4, the proposed filter clearly helps the algorithm to converge to the correct steady
state in long time.

Further, we illustrate plots of maxx |u∞| w.r.t. κ in Fig. 9, computed respectively by
the IMEX Fourier scheme (3.2) without and with filter. It can be seen that for the classical
method without filter, maxx |u∞|=1 when κ&0.70, indicating that the computed steady
state is wrong. On the other hand, the filtered method guarantees that the numerical
solution converges to the correct steady state.

4.2 Convergence of the filtered approach

In this part, we give some mathematical analysis to demonstrate that the filtered numer-
ical solution can converge to the desired steady state solution.

To explain the heart of the matter, we shall carry out the analysis for a semi-discrete
model with perturbations introduced by machine error. To simplify the analysis we only
consider a restricted set of parameters. For example, we take the representative case



D. Li et al. / CSIAM Trans. Appl. Math., x (202x), pp. 1-23 11

Figure 9: maxx |u∞| w.r.t. κ computed by the first-order IMEX scheme respectively without filter (left) and
with filter (right).

κ= 0.9 which was considered in the earlier numerical experiments (see Figs. 4 and 8) to
ensure the uniqueness of the zero-up ground state and simplify the relevant perturbative
analysis. To minimize technicality we did not work with the optimal assumptions. In
forthcoming works we will develop a comprehensive theoretic framework to address all
issues related to full discretization, truncation error and so on.

To this end, we consider κ=0.9 and

w−u

τ
=κ2∂xxw−(u3−u), on [−π,π], (4.3)

where u,w : T→R are both odd and smooth. Clearly

w=(1−κ2τ∂xx)
−1[u−τ(u3−u)]. (4.4)

We denote the map u 7→w as

w=N (u). (4.5)

The main model for the filtered solution is given by





un+1=N (vn),

vn+1=un+1+εn+1,

v0=u0+ε0,

(4.6)

where εn : T→R are given machine error functions. Our standing assumption is that

sup
n≥0

‖εn‖H1(T)≤ ε∗≪1, (4.7)
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where ε∗>0 is a very small constant which corresponds to machine precision. We shall
assume that all εn are odd. This very assumption corresponds to our filtering technique,
i.e., we apply the Fourier filter at each iteration step. One should note that un+1 corre-
sponds to the exact numerical solution computed flawlessly (i.e. without machine error)
using the numerical scheme, and vn+1 corresponds to the actual numerical solution tak-
ing into account of the machine error.

We point out that the H1 assumption (4.7) is reasonable at least for moderately small
N, where N is the number of Fourier modes in the Fourier collocation method. A more
realistic assumption is to use only L∞-norm. Here to simplify the relevant analysis we
employ this slightly stronger assumption.

In Lemma 4.1 below, we just consider the case of κ = 0.9, which ensures that there
exists a unique odd zero-up ground state. Moreover, one should note that as κ→ 1, the
energy of the odd zero-up ground state goes to π

2 (see Fig. 3) and the constant C1 in (4.10)
has to be taken sufficiently close to zero. In order not to overburden the reader with
these technicalities and to simplify the analysis, we consider the simplest case of κ=0.9
to illustrate the main ideas.

Lemma 4.1 (Almost steady state). Fix κ=0.9 and assume that Usteady is the unique odd zero-

up ground state for the equation κ2u′′+u−u3=0 on T=[−π,π]. Suppose u :T→R is a smooth
odd function satisfying

κ2u′′+u−u3= r(x), (4.8)

where the residual error function r(x) satisfies

‖r‖2≤ r∗≪1. (4.9)

Assume

E(u)=
∫

T

(
1

2
κ2(u′)2+

1

4
(u2−1)2

)
dx≤ π

2
−C1, C1=0.001. (4.10)

Suppose u′(0)≥0, then

‖u−Usteady‖H1(T)≤α1r∗, (4.11)

where α1=O(1) is an absolute constant.

Proof. We only sketch the details. Denote u′(0)≥ 0 and observe that we have ‖u′‖∞ =
O(1). Consider

{
κ2u′′+u−u3= r,

u(0)=0, u′(0)= p,

{
κ2w′′+w−w3=0,

w(0)=0, w′(0)= p.
(4.12)
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Note that here we use the letter p to denote u′(0) which is given (i.e. p is not a parameter).
Since u and w have the same initial conditions, we obtain that

‖u−w‖H1(T)≤O(1)r∗, |E(u)−E(w)|≪1. (4.13)

Clearly E(w)≤ π
2 −0.001. By using the classification of steady state [10], we obtain that

w must coincide with Usteady. In particular, this shows that p= u′(0) in (4.12) cannot be
arbitrary and has to coincide with the ground state. The desired result follows easily.

Lemma 4.2. Fix κ = 0.9 and assume Usteady is the unique odd zero-up ground state for the
equation

κ2u′′+u−u3=0 on T=[−π,π].

Suppose that u∈H1(T) is an odd function on T with

E(u)=
∫

T

(
1

2
κ2(u′)2+

1

4
(u2−1)2

)
dx≤ π

2
−C1, C1=0.001. (4.14)

Then we have

min{‖u−Usteady‖H1(T), ‖u+Usteady‖H1(T)}≤C2

√
E(u)−E(Usteady), (4.15)

where C2>0 is an absolute constant.

Proof. This follows from a general (nontrivial) spectral estimate established in [10].

With the above two lemmas, we now present the main theorem of this section.

Theorem 4.1. Assume the initial state u0 : T→R is odd, ‖u0‖∞≤1 and

E(u0)<
π

2
−0.002. (4.16)

Suppose that the machine error functions {εn}n≥0 are odd and satisfy (4.7). Let κ = 0.9 and
consider (4.6) with τ∗≤τ≤ 1

2 , where τ∗=
√

ε∗. Then the following hold.

(1) E(Usteady)≤E(vn+1)≤ π
2 −0.001, ∀n≥0.

(2) For n sufficiently large, we have

min
{
‖vn−Usteady‖H1(T), ‖vn+Usteady‖H1(T)

}
≤ α̃ε

1
8∗ , (4.17)

where α̃=O(1) is an absolute constant.
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Proof. By a recent result in [9], for any τ∗≤τ≤ 1
2 , we have

sup
n≥0

max{‖un‖∞, ‖vn‖∞}≤1.1.

We begin with the basic energy inequality. Namely for any τ∗≤τ≤ 1
2 and w=N (u) with

u odd, E(u)≤ π
2 −0.001 and max{‖w‖∞ ,‖v‖∞}≤1.1, we have

1

5τ
‖w−u‖2

2+
1

2
κ2‖∂x(w−u)‖2

2+E(w)≤E(u). (4.18)

The main inductive assumption is

E(vn)≤ π

2
−0.001. (4.19)

Clearly, this holds at the base step n=0. We now assume it holds at step n and consider
the solution at n+1 given by

vn+1=un+1+εn+1=N (vn)+εn+1. (4.20)

Now we discuss two cases.

Case 1: ‖un+1−vn‖2/τ≤δ
(1)
∗ , where δ

(1)
∗ ≪1 is some suitably small constant to be specified

at the end of the proof. Note that by using un+1=N (vn) and the fact that E(vn)≤π
2−0.001,

we have

E(un+1)≤E(vn) and ‖un+1‖H1(T)=O(1). (4.21)

Thus

κ2∂xxun+1− f (un+1)=
un+1−vn

τ
+ f (vn)− f (un+1)= rn+1(x), (4.22)

where ‖rn+1‖2≪1. By Lemma 4.1 we obtain

min
{
‖un+1−Usteady‖H1(T), ‖un+1+Usteady‖H1(T)

}
≤αδ

(1)
∗ , (4.23)

where α>0 is an absolute constant (note that in the more general case, α should depend
on κ). Thus in this case we have

min
{
‖vn+1−Usteady‖H1(T), ‖vn+1+Usteady‖H1(T)

}
≤αδ

(1)
∗ +ε∗. (4.24)

Clearly then E(vn+1)≤ π
2 −0.001.
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Case 2: ‖un+1−vn‖2/τ>δ
(1)
∗ . By Eq. (4.18) we have

E(vn)≥E(un+1)+
1

5τ
‖un+1−vn‖2

2

≥E(un+1)+
1

10τ
(δ

(1)
∗ )2τ2+

1

10τ
‖un+1−vn‖2

2

≥E(vn+1)+O(ε∗)+
1

10
(δ

(1)
∗ )2τ+

1

10τ
‖un+1−vn‖2

2. (4.25)

Thus if

O(ε∗)+
1

10
(δ

(1)
∗ )2τ>0, (4.26)

then we obtain

E(vn)≥E(vn+1)+
1

10τ
‖un+1−vn‖2

2. (4.27)

Thus for all cases we have proved (4.19). With (4.19) in hand, we now claim that there
exists some n0≥1 such that Case 1 holds at n=n0, i.e.

‖un+1−vn‖2

τ
≤δ

(1)
∗ . (4.28)

Assume this is not true, then we are always in Case 2. By (4.27) we obtain

1

10τ

∞

∑
n=1

‖un+1−vn‖2
2<∞.

This clearly implies the existence of n0. Thus the claim (4.28) holds.
Next, we show that if for some n0, (4.28) holds, then the energy of all future vn+1, n≥

n0 will remain in the vicinity of the ground state, i.e.

E(vn+1)≤E(Usteady)+C3 ·(αδ
(1)
∗ +ε∗), (4.29)

where C3>0 is an absolute constant. Indeed, (4.29) holds for n=n0 and any m>n0 which
is in Case 1. Now for any m>n0 such that m is in Case 2. We define

m∗=min{j : j≤m and any m̃ in [j,m] is in Case 2}.

Clearly by monotonicity of energy in Case 2, we have

E(vn+1)≤E(vm∗+1)≤E(vm∗). (4.30)

Since by definition, m∗−1 is in Case 1, we have

E(vm∗)≤E(Usteady)+C3 ·(αδ
(1)
∗ +ε∗), (4.31)
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thus (4.29) holds for all vn+1, n≥n0. It follows from Lemma 4.2 that for any n≥n0,

min
{
‖vn+1−Usteady‖H1(T), ‖vn+1+Usteady‖H1(T)

}
≤C2

√
C3 ·(αδ

(1)
∗ +ε∗). (4.32)

To see that (4.32) gives us the desired result, we now specify the parameters used in

the proof. We take τ∗= ε
1
2∗ and δ

(1)
∗ = βε

1
4∗ with β being an O(1) constant, then (4.26) is

clearly satisfied. Plugging the values of δ
(1)
∗ and ε∗ into (4.32), we obtain the desired

conclusion.

We close this section by making several remarks relevant to the above theorem and
its proof.

• The condition (4.16) is to ensure that the energy of u0 is below π/2= E(0) where
E(0) is the energy of u≡ 0. This simple assumption avoids the scenario that the
solution becomes zero in finite time. For u0=sin(x) and κ=0.9, we can compute

E(u0)≈1.5327<
π

2
−0.002. (4.33)

• As we have mentioned earlier, the reasons why we take κ=0.9 are: 1) to ensure the
uniqueness of the odd zero-up ground state; 2) to simplify the perturbative analysis
around the ground state; 3) to back up the numerical experiments (see Figs. 4 and
8). In forthcoming works, we shall treat more general cases.

• To simplify the analysis, we did not optimize the parameters such as τ∗ and the
other relevant parameters used in the proof. In view of the smallness of the machine
error ε∗, the cut-off τ∗ is quite a realistic assumption since we usually do not adopt
exceedingly small time steps in such long time simulations. Further fine-tuning is
certainly possible but we shall not dwell on this issue here.

• From our analysis, it is clear that an improved algorithm can include a stopping
criterion when the residual error becomes suitably small. This would also bring
drastic simplifications in our proof. In particular, one does not need to consider the
situation where the numerical solution hops between Case 1 and Case 2 intermit-
tently.

5 More numerical experiments

In the following numerical experiments, the time step is τ = 0.01 and the number of
Fourier modes is N=256 by default. In addition, the “numerical” steady state is obtained
when the residual error of the scheme is smaller than Tol= 10−12 or the time arrives at
t=105.
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5.1 More 1D Allen-Cahn examples

Example 5.1. We consider more initial conditions. Let the parameter κ = 0.1 and the
initial data u0=sin(x), 1

2 (sin(x)+sin(2x)), 1
2 (sin(x)+sin(4x)) or 1

2 (sin(x)+sin(8x)), re-
spectively.

The approximate steady states are computed using the filtered first-order IMEX pseudo-
spectral method. In Fig. 10, it shows that for these odd initial conditions, u(x,t) converges
to the same steady state with period 2π.

Example 5.2. We consider more parameter of κ. Let u0 = sin(x), κ = 0.999 and 1.001
respectively.

(a) (b)

(c) (d)

Figure 10: Example 5.1: Numerical steady states (red curves) for different initial conditions (bold blue curves):

(a): u0=sin(x), (b): 1
2 (sin(x)+sin(2x)), (c): 1

2 (sin(x)+sin(4x)) and (d): 1
2 (sin(x)+sin(8x)).
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(a) (b)

Figure 11: Example 5.2: Computed steady states (red curves) respectively in the cases of (a): κ=0.999,
and (b): κ=1.001.

It is observed in Fig. 11 that when κ is slightly smaller than 1, the steady state is
nonzero, while when κ is slightly larger than 1, the steady state is zero. This is in good
agreement with our theory in Section 2.

Example 5.3. We consider an intricate case of metastable states for the Allen-Cahn equa-
tion. Let κ=

√
0.001 and take two different initial functions u0 =

1
2(sin(x)+sin(2x)) and

u0=
1
2(sin(x)+sin(8x)).

It is observed numerically even if the oddness is preserved the numerical solution can
get stuck in the metastable states. In particular, it is seen from the left-hand side of Fig. 12
that for u0 =

1
2(sin(x)+sin(2x)), the corresponding solution u is stuck in the metastable

state when the residual error reaches Tol= 10−12. Similarly, on the right-hand side for
u0=

1
2(sin(x)+sin(8x)), the corresponding solution u is stuck in another metastable state.

An interesting issue is to investigate these metastable behaviors.

5.2 A 2D Allen-Cahn example

Example 5.4. We consider the 2D Allen-Cahn equation

∂tu=κ2∆u+u−u3 on T
2=[−π,π]2, (5.1)

with κ=0.1 and u0(x,y)=sin(x)sin(y).

Clearly, u(x,y,t) should have the form

u(x,y,t)= ∑
k1 ,k2≥1

ck1 ,k2
(t)sin(k1x)sin(k2y), (5.2)
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(a) (b)

Figure 12: Example 5.3: Metastable states (red curves) for (a): u0 =
1
2 (sin(x)+sin(2x)) and (b): u0 =

1
2 (sin(x)+sin(8x)), with κ=

√
0.001.

where ck1 ,k2
is the Fourier coefficient of the (kth

1 ,kth
2 ) mode. This indicates the symmetries

u(x,y,t)=−u(−x,y,t) and u(x,y,t)=−u(x,−y,t). In our computation, we use the first-
order-IMEX pseudo-spectral method to solve the 2D Allen-Cahn equation with τ= 0.01
and Nx×Ny =256×256 Fourier modes.

Then, we impose the following 2D symmetry-preserving Fourier filter: ∀n≥0,

ûn(k1 =0,k2)=0, ûn(k1,k2=0)=0; (5.3a)

Im(ûn(k1,k2))=0; (5.3b)

ûn(k1,k2)←
1

2
(ûn(k1,k2)−ûn(−k1,k2)), ∀k1,k2; (5.3c)

ûn(k1,k2)←
1

2
(ûn(k1,k2)−ûn(k1,−k2)), ∀k1,k2. (5.3d)

In the actual numerical implementation, we apply first (5.3c) and then (5.3d). In MATLAB

implementation, we use the following command

for j = 1:Ny

un hat(:,j) = [0;(u hat(2:end,j)-flip(u hat(2:end,j)))/2];

end

for i = 1:Nx

u hat(i,:) = [0,(un hat(i,2:end)-flip(un hat(i,2:end)))/2];

end

It is observed from Fig. 13 that without filter the symmetries are destroyed and u
tends to the incorrect steady state. On the other hand, the symmetry can be preserved
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Figure 13: Example 5.4: Dynamics of 2D Allen-Cahn equation using the first-order IMEX method without filter
(symmetry breaking happens!) where κ=0.1, u0=sin(x)sin(y), τ=0.01, Nx =Ny =256.

using this filter, see Fig. 14. A comparison between the corresponding energy evolutions
is provided in Fig. 15.

Remark 5.1. It should be pointed out that in this work we single out the odd symme-
try as one of the fundamental preserved quantities for two reasons: 1) restriction to odd
symmetry eliminates a plethora of unwanted unstable and neutral manifolds; 2) this is
the simplest yet unsolved (before our work) scenario where accumulation of machine
errors can lead to abrupt escape to spurious energy minimizing states. Our work is of
fundamental importance for future investigations in this direction. Even for the 1D sim-
ple equation as (1.1), the situation for general initial data remains elusive and one should
not take for granted the evenness or oddness as fundamental should-be-conserved sym-
metries. For example if we take u0 = cos(x) = sin(x+ π

2 ), then according to our recent
classification of stead states in [10], the correct steady state should be Uκ(x+ π

2 ). In this
case, the fundamental axis of (odd) symmetry should be x =−π/2, i.e. the symmetry
u(x)=−u(−π−x) should be preserved in time. It is possible to develop the correspond-
ing filter and apply our framework to this case, however we shall not dwell on this issue
here.



D. Li et al. / CSIAM Trans. Appl. Math., x (202x), pp. 1-23 21

Figure 14: Example 5.4: Same as Fig. 13, except with filter (5.3).

6 Concluding remarks

In this work, we investigated the numerical computation and analysis for steady states
of the Allen-Cahn equation with double well potential. Quite surprisingly we find that
for very smooth odd initial condition, the numerical solution computed using standard
algorithms and very high precision may lose parity in not very long time simulations
and eventually converge to the spurious steady state. We call it (numerical) breakdown
of symmetry for Allen-Cahn as a manifestation of the gradual accumulation of machine
round-off errors. This new phenomenon shows that, just much like other physical con-
servation laws, conservation of symmetry could possibly be ironed into the fundamen-
tal construction of numerical algorithms since the violation of symmetry could lead to
completely erroneous long time simulations. To resolve this issue we introduced a new
symmetry-preserving filter technique in order to give an accurate long time computation
of the steady states. We developed a new theoretical framework taking into account of
perturbations introduced by machine errors. This opens doors to many future directions
and developments.

In future works, we shall develop a new asymptotic theory and spectral analysis
framework around the steady states. We also plan to address the following important
issues.
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Figure 15: Example 5.4: Energy evolutions of 2D Allen-Cahn equation computed by the first-order IMEX
method respectively without filter and with filter.

• General filtering/stabilizing technique for long time numerical computations. In
our work we introduced a symmetry-preserving filter to deal with special data with
odd symmetry or certain spectral band gaps. In the future we will develop a more
systematic filtering procedure to suppress the spurious unstable modes in the long
time simulations. In addition, we plan to develop a complete theoretical framework
to show the stability of filtered solutions under perturbations by machine errors.
This will include full numerical discretization as well as very realistic assumptions
on the machine errors and so on.

• Other equations and phase field models. These include nonlocal Allen-Cahn equa-
tions driven by general polynomials or logarithmic nonlinearities, and also the
Cahn-Hilliard equations, molecular beam epitaxy equation and so on.
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