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Abstract. The multiple scattering method T-matrix (MSTMM) can be used to solve the
electromagnetic response of systems consisting of many compact scatterers, retaining
a good level of accuracy while using relatively few degrees of freedom, largely sur-
passing other methods in the number of scatterers it can deal with. Here we extend
the method to infinite periodic structures using Ewald-type lattice summation, and
we exploit the possible symmetries of the structure to further improve its efficiency,
so that systems containing tens of thousands of particles can be studied with relative
ease. We release a modern implementation of the method, including the theoretical
improvements presented here, under GNU General Public Licence.
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1 Introduction

The problem of electromagnetic response of a system consisting of many relatively small,
compact scatterers in various geometries, and its numerical solution, is relevant to several
branches of nanophotonics. In practice, the scatterers often form some ordered structure,
such as metallic or dielectric nanoparticle arrays [12,29,61,70] that offer many degrees of
tunability, with applications including structural color, ultra-thin lenses [28], strong cou-
pling between light and quantum emitters [48, 57, 58], weak and strong coupling lasing
and Bose-Einstein condensation [16, 18, 19,49, 59, 60, 67, 69], magneto-optical effects [27],
or sensing [32]. The number of scatterers tends to be rather large; unfortunately, the most
common general approaches used in computational electrodynamics are often unsuit-
able for simulating systems with larger number of scatterers due to their computational
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complexity: differential methods such as the finite difference time domain (FDTD, [56])
method or the finite element method (FEM, [46]) include the field degrees of freedom
(DoF) of the background medium (which can have very large volumes), whereas integral
approaches such as the boundary element method (BEM, a.k.a the method of moments,
MOM |21, 40, 51]) need much less DoF but require working with dense matrices con-
taining couplings between each pair of DoF. Therefore, a common (frequency-domain)
approach to get an approximate solution of the scattering problem for many small par-
ticles has been the coupled dipole approximation (CD) [68] where a drastic reduction of
the number of DoF is achieved by approximating individual scatterers to electric dipoles
(characterised by a polarisability tensor) coupled to each other through Green’s functions.

CD is easy to implement and demands relatively little computational resources but
suffers from at least two fundamental drawbacks. The obvious one is that the dipole
approximation is too rough for particles with diameter larger than a small fraction of
the wavelength, which results to quantitative errors. The other one, more subtle, mani-
fests itself in photonic crystal-like structures used in nanophotonics: there are modes in
which the particles” electric dipole moments completely vanish due to symmetry, and
regardless of how small the particles are, the excitations have quadrupolar or higher-
degree multipolar character. These modes, belonging to a category that is sometimes
called optical bound states in the continuum (BIC) [22], typically appear at the band edges
where interesting phenomena such as lasing or Bose-Einstein condensation have been
observed [16,18,19,45,67] — and CD by definition fails to capture such modes.

The natural way to overcome both limitations of CD mentioned above is to take
higher multipoles into account. Instead of a polarisability tensor, the scattering prop-
erties of an individual particle are then described with more general transition matrix
(commonly known as T-matrix), and different particles” multipole excitations are cou-
pled together via translation operators, a generalisation of the Green’s functions used
in CDA. This is the idea behind the multiple-scattering T-matrix method (MSTMM), a.k.a.
superposition T-matrix method [34], and it has been implemented many times in the con-
text of electromagnetics [52], but usually only as specific codes for limited subsets of
problems, such as scattering by clusters of spheres, circular cylinders, or Chebyshev par-
ticles [9, 35, 36, 66]; there also exists a code for modeling photonic slabs including 2D-
periodic infinite arrays of spheres [54,55]. From the rather rare examples in this field of
publicly available codes with clear public licence and without proprietary dependences
we point out FaSTMM [37,38], which has been perhaps the most general MSTMM soft-
ware with respect to the system geometry for particle ensembles with homogeneous
background, and SMUTHI [7, 8] for dealing with finite ensembles of particles in a lay-
ered medium.

However, the potential of MSTMM reaches far beyond its past implementations. Here
we present several enhancements to the method, which are especially useful in metama-
terial and nanophotonics simulations. We extend the method on infinite periodic lattices
(in all three possible dimensionalities) using Ewald-type summation techniques. This en-
ables, among other things, to use MSTMM for fast solving of the lattice modes of such
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periodic systems, and comparing them to their finite counterparts with respect to electro-
magnetic response, which is useful to isolate the bulk and finite-size phenomena of pho-
tonic lattices. Moreover, we exploit symmetries of the system to decompose the problem
into several substantially smaller ones, which provides better understanding of modes,
mainly in periodic systems, and substantially reduces the demands on computational re-
sources, hence speeding up the computations and allowing for finite size simulations of
systems with particle numbers practically impossible to reliably simulate with any other
method. Furthermore, the method can be combined with other integral methods, which
removes the limitation to systems with compact scatterers only, and enables e.g. includ-
ing more complicated substrates.

The power of the method has been already demonstrated by several works where
we used it to explain experimental observations: the finite lattice size effects on dipole
patterns and phase profiles of the nanoparticle lattice modes in [18], symmetry and po-
larisation analysis of the modes at the K-point of a honeycomb nanoparticle lattice in [16],
the structure of lasing modes in a Ni nanoparticle array [45] and energy spacing between
the I'-point modes in a finite lattice [59].

We hereby release our MSTMM implementation, the QPMS Photonic Multiple Scatter-
ing suite [44], as free software under the GNU General Public License version 3. QPMS
allows for linear optics simulations of arbitrary sets of compact scatterers in isotropic me-
dia. The features include computations of electromagnetic response to external driving,
the related cross sections, and finding resonances of finite structures. Moreover, it in-
cludes the improvements covered in this article, enabling to simulate even larger systems
and also infinite structures with periodicity in one, two or three dimensions, which can be
used e.g. for evaluating dispersions of such structures. The QPMS suite contains a core C
library, Python bindings and several utilities for routine computations, such as scattering
cross sections under plane wave irradiation or lattice modes of two-dimensional peri-
odic arrays. It includes Doxygen documentation together with description of the API. It
has been written with customisability and extendibility in mind, so that including e.g.
alternative methods of T-matrix calculations of a single particle’s matrix are as easy as
possible.

The current paper is organised as follows: Section 2 provides a review of MSTMM
theory for finite systems. In Section 3 we develop the theory for infinite periodic struc-
tures. In Section 4 we apply group theory on MSTMM to utilise the symmetries of the
simulated system. Finally, Section 5 shows some practical results that can be obtained
using QPMS.

2 Finite systems
The idea of MSTMM is quite simple: the driving electromagnetic field incident onto a

scatterer is expanded into a vector spherical wavefunction (VSWF) basis in which the sin-
gle scattering problem is solved, and the scattered field is then re-expanded into VSWFs
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centered at the other scatterers. Repeating the same procedure with all (pairs of) scatter-
ers yields a set of linear equations, solution of which gives the coefficients of the scattered
field in the VSWF bases. Once these coefficients have been found, one can evaluate vari-
ous quantities related to the scattering (such as cross sections or the scattered fields) quite
easily.

The basic theory of MSTMM for finite system has been thoroughly described in sev-
eral works, cf. [31,39]. However, the expressions appearing in the re-expansions are fairly
complicated, and the implementation of MSTMM is extremely error-prone also due to the
various conventions used in the literature. Therefore although we do not re-derive from
scratch the expressions that can be found elsewhere in literature, for reader’s reference
we always state them explicitly in our convention.

2.1 Single-particle scattering

In order to define the basic concepts, let us first consider the case of electromagnetic (EM)
radiation scattered by a single particle. We assume that the scatterer lies inside a closed
ball Bg<(0) of radius R< and center in the origin of the coordinate system (which can be
chosen that way; the natural choice of Br<(0) is the circumscribed ball of the scatterer)
and that there exists a larger open cocentric ball Bg> (0), such that the (non-empty) spheri-
cal shell ®g< g> (0)=Bg> (0)\Bg= (0) is filled with a homogeneous isotropic medium with
relative electric permittivity e(r,w) = € (w) and magnetic permeability u(r,w) = pp(w),
and that the whole system is linear, i.e. the material properties of neither the medium nor
the scatterer depend on field intensities. Under these assumptions, the EM fields ¥ =E,H
in Og< g> (0) must satisfy the homogeneous vector Helmholtz equation together with the
transversality condition

(V241 ¥ (rw)=0, V-¥(rw)=0 (2.1)

with wave number’ x =« (w) = w+/pp(w)ep(w) /co, as can be derived from Maxwell’s
equations [23].

2.1.1 Spherical waves

Eq. (2.1) can be solved by separation of variables in spherical coordinates to give the
solutions — the regular and outgoing vector spherical wavefunctions (VSWEFs) v, (kr)
and uq, (kr), respectively, defined as follows:

Vi (k1) =i (k1) Aq 1 (R),

1 d(xrj; (Kr))Az,l,m (#)+ l(l—l—l)le{—Krr)Aalm(f')/ (2.2)

Vaim (Kr) = r  d (KT’)

+Throughout this text, we use the letter k for wave number in order to avoid confusion with Bloch vector k
and its magnitude, introduced in Section 3.
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i (k2) =y (k1) A (2),
1

1 d(K?’hl( )(KV))

o (K1) = =4y

=12 1=1,2,3,--; m=—L,—I+1,--,+I,

h
Aot (B) +/1(H1) = A (1), (2.3)

where r=rt=r(sinf (Xcos¢p+§sing)+2zcosb); j; (x),hl(l) (x)=j; (x)+iy; (x) are the regular
spherical Bessel function and spherical Hankel function of the first kind#, respectively, as
in [5, §10.47], and A, ,, are the vector spherical harmonics

1 1
Ay (R) =V X (1Y) (})) = ——ouuVY] ,, (}) X1,
11,m (%) e (Y7, (%)) TG (B) xr
1
Ay () =——=rVY;,, (1),
2,,m (%) l(l+1)r 1m ()
Az (t) =1V (1) (2.4)

Note that the regular waves v}, (with fields expressed in cartesian coordinates) have all
well-defined limits in the origin, and except for the “electric dipolar” waves vi,,, they
vanish. In our convention, the (scalar) spherical harmonics Y;,, are identical to those
in [5, 14.30.1], i.e.

where importantly, the Ferrers functions P} defined as in [5, §14.3(i)] do already contain
the Condon-Shortley phase (—1)". For later use, we also introduce “dual” spherical
harmonics Y], defined by duality relation with the “usual” spherical harmonics

// Yl,’,m/ (f) Yl,m (f) dQ=38v:6116mm (2.5)

and corresponding dual vector spherical harmonics

[ At (8): A () A =6 61180 (2.6)
(complex conjugation not implied in the dot product here). In our convention, we have

Yim (@) =Ym(®) = (=1)"Y),-n (%),
AL ()= (Acu(®)" = (=1)" Agj ().

The interpretation of u,, (kr) containing spherical Hankel functions of the first kind as outgoing waves at
positive frequencies is associated with a specific choice of sign in the exponent of time-frequency transfor-
mation, ¢ (f) = (27{)71/ 2 [ (w)e ™!dw. This matters especially when considering materials with gain or
loss: in this convention, lossy materials will have refractive index (and wavenumber «, at a given positive
frequency) with positive imaginary part, and gain materials will have it negative and, for example, Drude-
Lorenz model of a lossy medium will have poles in the lower complex half-plane.
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The convention for VSWFs used here is the same as in [30]; over other conventions
used elsewhere in literature, it has several fundamental advantages — most importantly,
the translation operators introduced later in Eq. (2.21) are unitary, and it gives the sim-
plest possible expressions for power transport and cross sections without additional /,m-
dependent factors (for that reason, we also call our VSWFs as power-normalised). Power-
normalisation and unitary translation operators are possible to achieve also with real
spherical harmonics — such a convention is used in [31].

2.1.2 T-matrix definition

The regular VSWFs v, (kr) would constitute a basis for solutions of the Helmholtz equa-
tion (2.1) inside a ball Bg> (0) with radius R~ and center in the origin, were it filled with
homogeneous isotropic medium; however, if the equation is not guaranteed to hold in-
side a smaller ball Bg< (0) around the origin (typically due to presence of a scatterer), one
has to add the outgoing VSWFs u,,, (kr) to have a complete basis of the solutions in the
volume ®R<,R> (0) = BR> (0) \BR< (0)

The single-particle scattering problem at frequency w can be posed as follows: Let a
scatterer be enclosed inside the ball Bg-< (0) and let the whole volume Og-< r> (0) be filled
with a homogeneous isotropic medium with wave number « (w). Inside @< g>(0), the
electric field can be expanded as

co 41

E(w,r)= Y Y Y (aumVeim (K) + frmrim (k1)). (2.7)

T=1,2l=1m=-1

If there were no scatterer and Bg-< (0) were filled with the same homogeneous medium,
the part with the outgoing VSWFs would vanish and only the part Einc =) 17, @c1m Vrim
due to sources outside Bg> (0) would remain. Let us assume that the “driving field” is
given, so that presence of the scatterer does not affect Ei,. and is fully manifested in the
latter part, Escat = Y ¢ frimUem- We also assume that the scatterer is made of optically
linear materials and hence reacts to the incident field in a linear manner. This gives a
linearity constraint between the expansion coefficients

lem: Z TTZm;T’l’m’aT’l’m’/ (28)

U'm’

where the Ty = Trmorm (w) are the elements of the transition matrix, ak.a. T-
matrix. It completely describes the scattering properties of a linear scatterer, so with
the knowledge of the T-matrix we can solve the single-particle scattering problem sim-
ply by substituting appropriate expansion coefficients a.,, of the driving field into (2.8).
The outgoing VSWF expansion coefficients f;,, are the effective induced electric (7 =2)
and magnetic (T =1) multipole polarisation amplitudes of the scatterer, and this is why
we sometimes refer to the corresponding VSWFs as to the electric and magnetic VSWFs,
respectively.



M. Ne¢ada and P. Téorma / Commun. Comput. Phys., x (20xx), pp. 1-39 7

T-matrices of particles with certain simple geometries (most famously spherical) can
be obtained analytically [31,41]; for particles with smooth surfaces one can find them
numerically using the null-field method [31, 62,63] which works well in the most typical
cases, but for less common parameter ranges (such as concave shapes, extreme values
of aspect ratios or relative refractive index) they might suffer from serious numerical
instabilities [42, Sect. 5.8.4]. In general, elements of the T-matrix can be obtained by
simulating scattering of a regular spherical wave v, and projecting the scattered fields
(or induced currents, depending on the method) onto the outgoing VSWFs u,/y,,. In
practice, one can compute only a finite number of elements with a cut-off value L on the
multipole degree, I,I’ < L, see below.

For the numerical evaluation of T-matrices for simple axially symmetric scatterers in
QPMS, we typically use the null-field equations, and for more complicated scatterers we
use the scuff-tmatrix tool from the free software SCUFF-EM suite [50,51].8

2.1.3 T-matrix compactness, cutoff validity

The magnitude of the T-matrix elements depends heavily on the scatterer’s size com-
pared to the wavelength. Typically,1 from certain multipole degree onwards, [,I’ > L,
the elements of the T-matrix are negligible, so truncating the T-matrix at finite multipole
degree L gives a good approximation of the actual infinite-dimensional operator. If the
incident field is well-behaved, i.e. the expansion coefficients a,/,,; do not take excessive
values for I’ > L, the scattered field expansion coefficients f;, with I > L will also be
negligible.

A rule of thumb to choose the L with desired T-matrix element accuracy é can be ob-
tained from the spherical Bessel function expansion around zero [5, 10.52.1] by requiring
that 6>> (nR)"/ (2L+1)!!, where R is the scatterer radius and # its (maximum) refractive
index.

2.14 Power transport

For convenience, let us introduce a short-hand matrix notation for the expansion coeffi-
cients and related quantities, so that we do not need to write the indices explicitly; so for
example, Eq. (2.8) would be written as f=Ta, where a, f are column vectors with the ex-
pansion coefficients. Transposed and complex-conjugated matrices are labeled with the
T superscript.

SNote that the upstream versions of SCUFF-EM contain a bug that renders almost all T-
matrix results wrong; we found and fixed the bug in our fork available at https://github.
com/texnokrates/scuff-emhttps://github.com/texnokrates/scuff-em in revision https://github.com/
texnokrates/scuff-em/commit/78689f5514072853aabcad455ce15b3e024d163dg78689f5. However, the
https://github.com/HomerReid/scuff-em/pull/197bugfix has not been merged into upstream by the
time of writing this article.

11t has been proven that the T-matrix of a bounded scatterer is a compact operator for acoustic scattering
problems [11]. While we conjecture that this holds also for bounded electromagnetic scatterers, we are not
aware of a definitive proof.
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With this notation, we state an important result about power transport, derivation of
which can be found in [31, sect. 7.3]. Let the field in @< z> (0) have expansion as in (2.7).
Then the net power transported from Bg<(0) to ®r< r>(0) by electromagnetic radiation

is
1 s A7t T'+T
~ s (RN HIR) = g (1T 75 ) 29

where 170 = \/po/€0 and 17 =/ /€ are wave impedance of vacuum and relative wave
impedance of the medium in ®g-< g> (0), respectively. Here P is well-defined only when
x27 is real. In realistic scattering setups, power is transferred by radiation into Bg< (0) and
absorbed by the enclosed scatterer, so P is negative and its magnitude equals to power
absorbed by the scatterer. In other words, the hermitian operator [T=T'T+ (T"+T) /2
must be negative (semi-)definite for a particle without gain. This provides a simple but
very useful sanity check on the numerically obtained T-matrices: non-negligible positive
eigenvalues of I'l indicate either too drastic multipole truncation or another problem with
the T-matrix.

2.1.5 Plane wave expansion

In many scattering problems considered in practice, the driving field is at least approx-
imately a plane wave. A transversal (k-Eg=0) plane wave propagating in direction k
with (complex) amplitude Eq can be expanded into regular VSWFs [31, 7.7.1] as

Epw (r,w) = EoeiKlA('r = Z a tim <1A</ EO) Viim (Kr) ’

T,l,m

where the expansion coefficients are obtained from the scalar products of the amplitude
and corresponding dual vector spherical harmonics

a1 (kEo> ami'Al (k) ‘Eo,
aoim (K Bo) = —47i' 1AL, (K) -Eo. (2.10)

2.1.6 Cross-sections (single-particle)

With the T-matrix and expansion coefficients of plane waves in hand, we can state the
expressions for “cross-sections” of a single scatterer irradiated by a given monochromatic
plane wave: (i) the absorption cross section o,p,s, the total power absorbed by the scatterer
divided by irradiance of the incident plane wave, (ii) scattering cross section sct, the
radiant power of the scattered field Egq. leaving the scatterer divided by irradiance of the
incident plane wave, and (iii) extinction cross section, the combination of these two, Text=
Tabs +0scat- Assuming a non-lossy background medium, for a single scatterer irradiated
by a plane wave propagating in direction k and (complex) amplitude Ey these are [31,



M. Ne¢ada and P. Téorma / Commun. Comput. Phys., x (20xx), pp. 1-39 9

sect. 7.8.2]
Toxt (k> :—m%(cﬁ f) - —mf (T+T*) a, 2.11)
s () = KZH:EOHZ = KZH:EOHZ”+ (rm)e 212
s () =t (8) e (€) =~z (R (071) +11°)
_ _mcﬁ (T*T+ T+2+ T) a, (2.13)

where a =a(k,Ey) is the vector of plane wave expansion coefficients as in (2.10).

2.2 Multiple scattering

If the system consists of multiple scatterers, the EM fields around each one can be ex-
panded in an analogous way. Let P be an index set labeling the scatterers. We enclose
each scatterer in a closed ball Bg, (rp) such that the balls do not touch, Bg , (rp)NBg , (ry)=
©@;p,q € P, so there is a non-empty spherical shell O - (rp) around each one that con-

tains only the background medium without any scatterers; we assume that all the rele-

vant volume outside (,cp Bg, (rp) is filled with the same background medium. Then the
EM field inside each Og, k3 (rp) can be expanded in a way similar to (2.7), using VSWFs
with origins shifted to the centre of the volume:

0 4+

E(wr)= 3. )}, Y (pamVein (€ (x=1p)) + fyamttemn (k£ (r=7p))),  1€OR, & (rp).

T=12I=1m=-1
(2.14)

Unlike the single scatterer case, the incident field coefficients 4, ;1,, here are not only due
to some external driving field that the particle does not influence but they also contain
the contributions of fields scattered from all other scatterers:

ap=ady+ Y, Spcqfy (2.15)
q€P\{p}

where i, represents the part due to the external driving that the scatterers can not influ-
ence, and Sy, 4 is a translation operator defined below in Section 2.2.1, that contains the
re-expansion coefficients of the outgoing waves in origin r, into regular waves in origin
r,. For each scatterer, we also have its T-matrix relation as in (2.8),

fq=Tgqa4.
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Together with (2.15), this gives rise to a set of linear equations

fo=Tp Y., Speqfy=Tpdp, peP (2.16)
7€P\{p}

which defines the multiple-scattering problem. If all the p,g-indexed vectors and matrices
(note that without truncation, they are infinite-dimensional) are arranged into blocks of
even larger vectors and matrices, this can be written in a short-hand form

(I-TS) f=Ta, 2.17)

where [ is the identity matrix, T is a block-diagonal matrix containing all the individ-
ual T-matrices, and S contains the individual S,, ;-matrices as the off-diagonal blocks,
whereas the diagonal blocks are set to zeros.

We note that Eq. (2.17) with zero right-hand side describes the normal modes of the
system; the methods mentioned later in Section 3 for solving the band structure of a
periodic system can be used as well for finding the resonant frequencies of a finite system.

In practice, the multiple-scattering problem is solved in its truncated form, in which
all the /-indices related to a given scatterer p are truncated as [ < L,, leaving only N, =
2L, (L,+2) different T/m-multi-indices left. The truncation degree can vary for different
scatterers (e.g. due to different physical sizes), so the truncated block [S,] L<Lyl,<L,
has shape N, X Ny, not necessarily square.

If no other type of truncation is done, there remain 2L, (L,+2) different T/m-multi-
indices for the p-th scatterer, so that the truncated version of the matrix (I-TS) is a

square matrix with (Zpep N,[,)2 elements in total. The truncated problem (2.17) can then
be solved using standard numerical linear algebra methods (typically, by LU factorisation
of the (I—TS) matrix at a given frequency, and then solving with Gauss elimination for
as many different incident @ vectors as needed).

Alternatively, the multiple scattering problem can be formulated in terms of the reg-
ular field expansion coefficients,

ap— Z SpqTyag=a,, peP,
q€P\{p}
(I-ST)a=a,

but this form is less suitable for numerical calculations due to the fact that the regular
VSWEF expansion coefficients on both sides of the equation are typically non-negligible
even for large multipole degree [, hence the truncation is not justified in this case.

2.2.1 Translation operator

Let r1, 1, be two different origins; a regular VSWF with origin r; can be expanded in terms
of regular VSWFs with origin r, as follows:

Viim (K(I‘—l‘l)) = Z erm;'r’l’m’ (K(r2_r1))vr’l’m’ (1‘—1‘2), (2.18)

''m!
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where an explicit formula for the regular translation operator R reads in Eq. (2.24) below.
For singular (outgoing) waves, the form of the expansion differs inside and outside the
ball BHI‘Z—I‘lH (1'1)1

Wepy (K(r—11))
_{Er’l’m’srlm;f’l’m/(x (rz—rl))vﬂ/m/(x (1‘—1‘2)), I'GBHH,QH (1'2), (2 19)
Lovm Retmrvm (K (12— 11) ) Up (K (1=12)), 1€ By, (12),

where the singular translation operator S has the same form as R in (2.24) except the

(1)

regular spherical Bessel functions j; are replaced with spherical Hankel functions /; .

As MSTMM deals most of the time with the expansion coefficients of fields ay, i, fp,cim
in different origins r, rather than with the VSWFs directly, let us write down how they
transform under translation. We assume the field can be expressed in terms of regular
waves everywhere, and expand it in two different origins Ty, 1y,

E (I',CL)) = Z [/Zp,-rlmV-L-lm (K (l'—l'p)) = Z aq,r/l/m/vr/l/m/ (K (l‘—l'q)) .

1 ]! !
T,l,m T,',m

Re-expanding the waves around r, in terms of waves around r, using (2.18),

E (I‘,W) = Z ap,'rlm Z erm;'r’l/m/ (K (l‘q —l'p) ) Vi iim! (K (l'—l'q))

T,l,m !'m’

and comparing to the original expansion around r;, we obtain

Ago'l'm! = Z erm;f’l’m’ (K (rq_rp))ap,flm' (2.20)

T,lm
For the sake of readability, we introduce a shorthand matrix form for (2.20)

(note the reversed indices). Similarly, if we had only outgoing waves in the original
expansion around r,, we would get

ag=Sgcpfp (2.22)
for the expansion inside the ball B [ (rp) and
fe=Raepfp (2.23)

outside.
In our convention, the regular translation operator elements can be expressed explic-
itly as

147
erm;r/l/m’ (d) = Z Ci‘lm;r/l/m/YA,m—m’ (d> jA (d)/ (2-24)
A=|l=I'|+|t—T'|
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and analogously the elements of the singular operator S, having spherical Hankel func-
tions (hl(l) =j;+iy;) in the radial part instead of the regular Bessel functions,

1+
Semerm ()= Y ChpenYamw ()1 (@), (2.25)
A=|l=1'|+|t—T'|

where the constant factors in our convention read

A !

CAI i = Alm;l’m’ =1
Tlm;t'l'm A /
Blm,'l’m’ T#T ’

roia (4 (2A+1) (2141) (2U'4+1
Ay =(-1) \/ s

I+ (' +1)

m —m' m'—m

><<é 10' g)(l : A >(l(l+1)+l’(l’+1)—/\(A+1)),

A = _—7(— 2
Blm;l’m’ Z( 1) l(l+1)l’(l’+1)
I I A=1\ /1 I A 5 >
><<0 0 0 ><m —m' m'_m> \/)‘2—(1—1’) \/(l+l’+1) —A2. (2.26)

L L I3). . . . .
Here (ﬂ’ll o m3> is the 3j symbol defined as in [5, §34.2]. Importantly for practical

calculations, these rather complicated coefficients need to be evaluated only once up to
the highest truncation order, /,I’ <L.

P ¢ 4 (2A+1) (2141) (21 +1)

In our convention, the regular translation operator is unitary, (RTlm,-T/l/m/(d))il =
Retmrrm (—d) =R .m (d), or in the per-particle matrix notation,

-1 t
Rycp=Rpeqg=Racp- (2.27)
Note that truncation at finite multipole degree breaks the unitarity, [Ry.p],. <1L #

[Rpeqlicr.=[Ricp] -, which has to be taken into consideration when evaluating quan-
tities such as absorption or scattering cross sections. Similarly, the full regular operators
can be composed

Racc=RacvRpee (2-28)

but truncation breaks this, [R«c|j<; 7 [Racb)j<p [Roecli<y -

2.2.2 Cross-sections (many scatterers)

For a system of many scatterers, Kristensson [31, sect. 9.2.2] derives only the extinction
cross section formula. Let us re-derive it together with the many-particle scattering and
absorption cross sections. First, let us take a ball containing all the scatterers at once,
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Br(r0) D UpepBr, (rp). Outside B (), we can describe the EM fields as if there was
only a single scatterer,

E (l‘) = Z (aD,TlmVrlm (K (1‘—1‘[])) +fD,TlmuTlm (K (I‘—I‘D))),

T,l,m

where ap, f are the vectors of VSWF expansion coefficients of the incident and total
scattered fields, respectively, at origin rg. In principle, one could evaluate f; using the
translation operators and use the single-scatterer formulae (2.11)-(2.13) with a =ap, f =
fo to obtain the cross sections. However, this is not suitable for numerical evaluation
with truncation in multipole degree; hence we need to express them in terms of particle-
wise expansions 4y, f,. The original incident field re-expanded around p-th particle reads
according to (2.21)

ﬁp = RW_DEI[’ (2.29)

whereas the contributions of fields scattered from each particle expanded around the
global origin r is, according to (2.22),

fo=3_ Rofy (2.30)

qeP

Using the unitarity (2.27) and composition (2.28) properties, one has

+ ~+ At
ahfo=a,RpoRaqefs=0, ) Rpcfy
qeP

=) (Rqepﬁpyfq =) a4 fy (2.31)

qeP qeP

where only the last expression is suitable for numerical evaluation with truncated ma-
trices, because the previous ones contain a translation operator right next to an incident
field coefficient vector. Similarly,

IfalP=fifo= Y (Raocpf)' ¥ Rocgfy

peP qeP

=) Zf;R%qfq- (2.32)

pePqeP

Substituting (2.31), (2.32) into (2.12) and (2.13), we get the many-particle expressions for
extinction, scattering and absorption cross sections suitable for numerical evaluation:

L o — RY @ (T,+T})ay, (2.33)

ST —— .
= =
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Oscat <f(/ EO)

olE 112 Z pr PF‘qu

2HEOH peEPIEP

—im L Z“ RpeqToaq, (2.34)

K2 HEO ” pePqeP

Tavs (K Bo ) = - HEon Y R ( i (ap+ Y Rpeyg fq>> (2.35)

qeP

An alternative approach to derive the absorption cross section is via a power transport
argument. Note the direct proportionality between absorption cross section (2.13) and
net radiated power for single scatterer (2.9), oaps = — 1057 P/2 || Eo||*. In the many-particle
setup (with non-lossy background medium, so that only the particles absorb), the total
absorbed power is equal to the sum of absorbed powers on each particle, —P=}_,cp —P,.
Using the power transport formula (2.9) particle-wise gives

o () ==z & (R(ar) +15:1) 230

which seems different from (2.35), but using (2.15), we can rewrite it as

o (k) =~ K2||Eo||2 R 1)

= aiar 5t (f’;(ﬁ” o S”“’f"””))'
€ q€P\{r}

It is easy to show that all the terms of },cp) ;cp\ (5} f; Speqfq containing the singular
spherical Bessel functions y; are imaginary, so that actually

peP q€P\{p} peP q€P\{p}

Z§R< ) f;sp%qffrf;fp)z%( ) f;Rp%qquFf;fp)

= Z§R< ). f;RPquq—'_f;RPFPfP) =Y Y fiRpafur

peP  \qeP\{p} pePqEP

proving that the expressions in (2.35) and (2.36) are equal.

3 Infinite periodic systems

Although large finite systems are where MSTMM excels the most, there are several rea-
sons that makes its extension to infinite lattices (where periodic boundary conditions
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might be applied) desirable as well. Other methods might be already fast enough, but
MSTMM will be faster (or at least comparably fast) in most cases in which there is enough
spacing between the neighboring particles. MSTMM works well with any space group
symmetry the system might have (as opposed to, for example, FDTD with a cubic mesh
applied to a honeycomb lattice), which makes e.g. application of group theory in mode
analysis quite easy. And finally, having a method that handles well both infinite and large
finite systems gives a possibility to study finite-size effects in periodic scatterer arrays.

3.1 Formulation of the problem

Let us have a linear system of compact EM scatterers on a homogeneous background as
in Section 2.2, but this time, the system shall be periodic: let there be a d-dimensional
(d can be 1, 2 or 3) Bravais lattice embedded into the three-dimensional real space, with
lattice vectors {ai}‘f:l, and let the lattice points be labeled with an d-dimensional integer
multi-index n € Z4, so the lattice points have cartesian coordinates R, = Z‘f:l n;a;. There
can be several scatterers per unit cell with indices « from a set P; and (relative) positions
r, inside the unit cell; any particle of the periodic system can thus be labeled by a multi-
index from P = Z%xP;. The scatterers are located at positions 1y o = Ry +1, and their
T-matrices are periodic, T o = T,. In such system, the multiple-scattering problem (2.16)
can be rewritten as

fn,ac —Ty Z Sn,aem,ﬁfm,ﬁ = Taﬁn,a/ (I‘I,IX) ceP. (31)
(m,B)eP\{(n,a)}

Due to periodicity, we can also write Spacmp = Sac p(Rm—Rn) = Suc g(Rm—n) =
Solaﬁm_nlﬁ. Assuming quasi-periodic right-hand side with quasi-momentum k, dn . =
do, (k)e®Rn, the solutions of (3.1) will be also quasi-periodic according to Bloch theo-
rem, fn .= fo. (k)e® R, and Eq. (3.1) can be rewritten as follows

fou(K)e®Ra T, Y Suemypfop(K)e*Rn =T, , (k)< R,

(m,B)eP\{(n,x)}
fO,ac (k) - Tac Z So,acemfn,ﬁfo,ﬁ (k)elk.Rmin = Taﬁo,ac (k)/
(m,B)€P\{(n,x)}
fO,oz (k) —Ty Z SO,M—m,ﬁfO,ﬂ (k) ek Rm — Tado,zx (k)/
(m,B)eP\{(0,4)}
fou (k) =Ta ) Wap (k) fo 6 (k) = Tudo, (), (3.2)

BeP

so we reduced the initial scattering problem to one involving only the field expansion
coefficients from a single unit cell, but we need to compute the “lattice Fourier transform”
of the translation operator,

Waﬁ(k)z Z (1_504,35m0)So,aem,ﬁeik'Rm/ (3.3)

meZzZ4
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evaluation of which is possible but rather non-trivial due to the infinite lattice sum, so we
cover it separately in Section 3.3.

As in the case of a finite system, Eq. (3.2) can be written in a shorter block-matrix
form,

(I—TW) fo (k) = Tag (k). (3.4

Eq. (3.2) can be used to calculate electromagnetic response of the structure to external
quasiperiodic driving field — most notably a plane wave. However, the non-trivial solu-
tions of the equation with right hand side (i.e. the external driving) set to zero,

(I-TW) fo (k) =0, (35)

describes the lattice modes, i.e. electromagnetic excitations that can sustain themselves
for prolonged time even without external driving. Non-trivial solutions to (3.5) exist if
the matrix on the left-hand side M (w,k)=(I—T (w)W (w,k)) is singular — this condition
gives the dispersion relation for the periodic structure. Note that in realistic (lossy) sys-
tems, at least one of the pair w,k will acquire complex values. The solution fp (k) is then
obtained as the right singular vector of M (w,k) corresponding to the zero singular value.

Loss in the scatterers causes the solutions of (3.5) shift to complex frequencies. If the
background medium has constant real refractive index n, negative (or positive) imag-
inary part of the frequency w causes an artificial gain (or loss) in the medium, which
manifests itself as exponential magnification (or attenuation) of the radial parts of the
translation operators, hl(l) (rnw/c), w.rt. the distance; the gain might then balance the
losses in particles, resulting in sustained modes satisfying Eq. (3.5).

3.2 Numerical solution

In practice, Eq. (3.4) is solved in the same way as Eq. (2.17) in the multipole degree trun-
cated form. The lattice mode problem (3.5) is (after multipole degree truncation) solved
by finding w,k for which the matrix M (w,k) has a zero singular value. A naive approach
to do that is to sample a volume with a grid in the (w,k) space, performing a singu-
lar value decomposition of M(w,k) at each point and finding where the lowest singular
value of M (w,k) is close enough to zero. However, this approach is quite expensive, since
W (w,k) has to be evaluated for each w,k pair separately (unlike the original finite case
(2.17) translation operator S, which, for a given geometry, depends only on frequency).
Therefore, a much more efficient but not completely robust approach to determine the
photonic bands is to sample the k-space (a whole Brillouin zone or its part) and for each
fixed k to find a corresponding frequency w with zero singular value of M (w,k) using a
minimisation algorithm (two- or one-dimensional, depending on whether one needs the
exact complex-valued w or whether the its real-valued approximation is satisfactory).
Typically, a good initial guess for w (k) is obtained from the empty lattice approxima-
tion, |k| = ,/€jiw/co (modulo reciprocal lattice points). A somehow challenging step is
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to distinguish the different bands that can all be very close to the empty lattice approxi-
mation, especially if the particles in the system are small. In high-symmetry points of the
Brillouin zone, this can be solved by factorising M (w,k) into irreducible representations
I'; and performing the minimisation in each irrep separately, cf. Section 4, and using the
different wr, (k) to obtain the initial guesses for the nearby points k+0dk.

An alternative, faster and more robust approach to generic minimisation algorithms
are eigensolvers for nonlinear eigenvalue problems based on contour integration [1, 13]
which are able to find the roots of M (w,k)=0 inside an area enclosed by a given complex
frequency plane contour, assuming that M (w,k) is an analytical function of w inside the
contour. A necessary prerequisite for this is that all the ingredients of M (w,k) are an-
alytical as well. In practice, this usually means that interpolation cannot be used in a
straightforward way for material properties or T-matrices. For material response, con-
stant permittivity or Drude-Lorentz models suit this purpose well. The need to evaluate
the T-matrices precisely (without the speedup provided by interpolation) at many points
might cause a performance bottleneck for scatterers with more complicated shapes. And
finally, the integration contour has to evade any branch cuts appearing in the lattice-
summed translation operator W (w, k), as described in the following and illustrated in
Fig. 1.

3.3 Computing the lattice sum of the translation operator

The problem in evaluating (3.3) is the asymptotic behaviour of the translation operator at
large distances, Spa¢m,g~ |Rm| ~LeikRm| 0 that its lattice sum does not in the strict sense
converge for any d > 1 -dimensional lattice unless 3x > 0. The problem of poorly con-
verging lattice sums can be solved by decomposing the lattice-summed function into two
parts: a short-range part that decays fast and can be summed directly, and a long-range
part which decays poorly but is fairly smooth everywhere, so that its Fourier transform
decays fast enough, and to deal with the long range part by Poisson summation over the
reciprocal lattice; these two parts put together shall give an analytical continuation of the
original sum for 3x <0. This idea dates back to Ewald [10] who solved the problem for
electrostatic potentials (Green’s functions for Laplace’s equation). For linear electrody-
namic problems, ruled by Helmholtz equation, the same basic idea can be used as well,
resulting in exponentially convergent summation formulae, but the technical details are
considerably more complicated than in electrostatics. For the scalar Helmholtz equation
in three dimensions, the formulae for lattice Green’s functions were developed by Ham
& Segall [20] for 3D periodicity, Kambe [24-26] for 2D periodicity and Moroz [43] for 1D
periodicity. A review of these methods for Helmholtz equation can be found in [33]; a
review of analytical techniques for lattice sums in general is provided by monograph [2].
Ewald-type summation techniques for Green'’s functions have been used in other multi-
pole approaches for periodic systems [17,64]; these, however, do not explicitly work with
T-matrices.

For our purposes we do not need directly the lattice Green’s functions but rather the
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Figure 1. Left: lllustration of branch cuts in M (w,k) obtained using Ewald summation over two-dimensional
square lattice in three-dimensional space filled with dielectric medium with constant real refraction index n
and wavenumber x (w)=wn/c. The function is holomorphic in the positive imaginary half-plane. The points
corresponding to the diffraction orders of an “empty” lattice lie on the real axis (pink), and from each of them two
branch cuts originate: one due to the branch cut in the incomplete T function (orange, hyperbolic shape), and
another due to the branch cut of (z) if the branch is selected to be continuous for —37/2<arg(z—1) <m/2
(blue, circular shape). Further non-analyticities might stem from the material model: the violet curve represents

a branch cut originating from a complex square root in the refractive index 1, (W) =+/€au(w), where eay (w)
is the Drude-Lorentz permittivity model of gold used for the scatterers. The other parameters used here are
px =580 nm (lattice period), k= (0.27t/px,0), n=1.52. The plot on the right shows the “empty” lattice
diffraction orders on the line k= (k,0), kx € 0,77/ px].

related lattice sums of spherical wavefunctions defined in (3.7), which can be derived
by an analogous procedure. Below, we state the results in a form independent upon the
normalisation and phase conventions for spherical harmonic bases (pointing out some er-
rors in the aforementioned literature) and discuss some practical aspects of the numerical
evaluation. The derivation of the somewhat more complicated 1D and 2D periodicities is
provided in the Supplementary Material.

We note that the lattice sums for scalar Helmholtz equation are enough for the eval-
uation of the translation operator lattice sum W,g(k): in Eq. (2.25) we demonstratively
expressed the translation operator elements as linear combinations of (outgoing) scalar
spherical wavefunctions

P (0) =1 (1) Y (B). (3.6)

If we formally label

oim(k,s)= Y (1—0r,s)e™ Ry, (k(s+Rn)), (3.7)

nezd
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we see from Egs. (2.25), (3.3) that the matrix elements of W,g(k) read

1+
A /
Woz,-rlm;‘B,T’l’m’ (k) = Z Crlm;r’l’m’U/\,m—m’ (_k’r“ —1“3) ;T 7& T
A=[l=l'|4+|t—7|

where the constant factors are exactly the same as in (2.26).

The lattice sums 07 ,, (k,s) are related to what is also called structural constants in some
literature [24-26], but the phase and normalisation differ. For reader’s reference, we list
the Ewald-type formulae for lattice sums 0 ,, (k,s) rewritten in a way that is independent
on particular phase or normalisation conventions of vector spherical harmonics.

In all three lattice dimensionality cases, the lattice sums are divided into short-range
and long-range parts, 07 ,, (k,s) = U'I(j;ﬂ) (k,s) +Ul(/I’;1”7) (k,s) depending on a positive param-
eter 77. The short-range part has in all three cases the same form:

l+l' 00
(S) 27 Iv (& \,ik-Ra JsnlPE ,—2 /42 221
o (s) === X (1=0R, -s)[snl Vi (8n) ™R x [ erlonlew/ittedgg
Im KlJrl\/EneZZ:d s/ [°n m\Sn .
3100mo 1 «?
OR. — I'f——=,—=|Y1,,(8,), 3.8
TOR,,—s \/E 2 4172 l,m(sn) (3.8)

where we labeled s, =s+Ry. The formal (1—-Jg,,—s) factor here accounts for leaving
out the direct excitation of a particle by itself, corresponding to the (1—8,30mo) factor
in (3.3). The leaving out then causes an additional (“self-interaction”) term on the last
line of (3.8), which appears only when the displacement vector s coincides with a lattice

point. Strictly speaking, this is not a “short-range” term, hence it is often noted separately

in the literature; however, we keep it in ‘71(?';17)

incomplete Gamma function.
In practice, the integrals in (3.8) can be easily evaluated by numerical quadrature and
the incomplete I'-functions using the series or continued fraction representations from [5].
The explicit form of the long-range part of the lattice sum depends on the lattice di-
mensionality. The long-range parts are calculated as sums over the reciprocal lattice A*

(k,s) for formal convenience. I'(4,z) is the

with lattice vectors {bi}?zl lying in the same d-dimensional subspace as the direct lattice
vectors {ai}le and satisfying a;-b;=4;;. In the following, let us label kx =k +K, where K
is a point in the reciprocal lattice, and let .4 be the lattice unit cell volume (or area/length
in the 2D /1D cases).

Case d=3.

141 I
(L) _ 4 ks UKKI/K) (10— i) /2 .
Oy (K,8)=——— ) e "9t —= " Ty, (K 3.9
I,m ( ) kA K;V K2 |kK|2 l,m( K) ( )

regardless of chosen coordinate axes. Here A is the unit cell volume (or length/area in
the following 1D /2D lattice cases).
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Cases d =1,2. In the quasiperiodic cases, we decompose vectors into parallel and or-
thogonal parts with respect to the linear subspace in which the Bravais lattice lies (the
reciprocal lattice lies in the same subspace), v=v | +v, and we label

Yo =i (1) = ([l =) /i, (3.10)

o 2
Ag;i(x,2) z/ % exp (—t—i—%) dt, (3.11)
x

where d. =3 —d is the complementary dimension of the lattice. Then

—i 2+ e
o (ks = e K;\e e
L= rkma\% (K Ve
X Z ],' (TK> Ad’] TZK’_ZK,YI(K |SJ_’
j=0 7"
“ 1 2j- 141 |kK| 4
x Y ani’(20s.)) BT IR ( )
I'=max(0,l—2j) m'==I'

. 2j—I1+1'
Jaoaoriao () (FH) - en

The angular integral on the last line of (3.12) gives a set of constant coefficients charac-
teristic to a chosen convention for spherical harmonics and coordinate axes; relatively
simple closed-form expressions are obtained for 2D periodicity if we choose the lattice to
lie in the xy plane, so that both r,,s | are parallel to the z axis, as done in [26], see also
Supplementary Material. In the special case s; =0 the expressions can be considerably
simplified as most of the terms vanish and Ay;(x,0) =T (1—d./2—j,x), but the general
case is needed for evaluating the fields in space (see Section 3.4) or if there is an offset
between two particles in a unitcell that is not parallel to the lattice subspace.

If s; #0, the integral A;;(x,0) can be evaluated e.g. using the Taylor series

Agj(%,2) Zr( S >(Z/k2!)2k

which has infinite radius of convergence and is the first choice for small z. Kambe [26]
mentions a recurrence formula that can be obtained integrating (3.11) by parts (with signs
corrected here):

4 1 . de i _ya 2
Bain(v2) =25 ((3-7) Bai(x2) ~Baga )+ 95 ) )
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with the first two terms for 2D periodicity

daa(a) =351 (o =g VR )+ (405 ).
st 553 o g0 550):

where w(z) =7 (1+2im~1/2 foz etzdt) is the Faddeeva function. However, the recurrence
formula (3.13) is unsuitable for numerical evaluation if z is small or j is large due to its
numerical instability.

One peculiarity of the two-dimensional case is the two-branchedness of vy, (k) and
the incomplete I-function T (3 —j,z) appearing in the long-range part (in the cases d=1,3
the function 7y, (k) appears with even powers, and I'(—j,z) is meromorphic for inte-
ger j [5, 8.2.9]). As a consequence, if we now explicitly label the dependence on the
wavenumber, ‘71(,17;1,)7) (x,k,s) has branch points at x = |k+K]| for every reciprocal lattice
vector K. If the wavenumber « of the medium has a positive imaginary part, Sx >0, then
the translation operator elements Sy, (kr) decay exponentially as [r| — oo and the lat-
tice sum in (3.3) converges absolutely even in the direct space, and it is equal to the Ewald
sum with the principal branches used both in 7 (z) and T (3 —j,z) [33]. For other values
of x, we typically choose the branch in such way that W,z (k) is analytically continued
even when the wavenumber’s imaginary part crosses the real axis. The principal value
of T (% — j,z) has a branch cut at the negative real half-axis, which, considering the lattice
sum as a function of «, translates into branch cuts starting at ¥ = |k+ K| and continuing
in straight lines towards +oco. Therefore, in the quadrant iz <0,3z >0 we use the contin-
uation of the principal value from @z < 0,3z <0 instead of the principal branch [5, 8.2.9],
moving the branch cut in the z variable to the positive imaginary half-axis. This moves
the branch cuts w.r.t. k away from the real axis, as illustrated in Fig. 1.

3.3.1 Choice of Ewald parameter and high-frequency breakdown

The Ewald parameter 1 determines the pace of convergence of both parts. The larger

(Sm (L1

1 is, the faster o) )(k s) converges but the slower o} - )(k s) converges. Therefore
(based on the lattice geometry) it has to be adjusted in a way that a reasonable amount
& y J y

of terms needs to be evaluated numerically from both al(j;ﬂ) (k,s) and Ul(,';;’?) (k,s). For
one-dimensional, square, and cubic lattices, the optimal choice for small frequencies
(wavenumbers) is 7=1/7/p where p is the direct lattice period [33]. However, in floating
point arithmetics, the magnitude of the summands must be taken into account as well in
order to maintain accuracy.

There is a particular problem with the “central” reciprocal lattice points in the long-
range sums for which the real part of |kK|2—K2 is negative: the incomplete I' function
present in the sum (either explicitly or in the expansions of A;) grows exponentially with

respect to the negative second argument, with asymptotic behaviour T'(a,z) ~ e 22771,
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Therefore for higher frequencies, the parameter 17 needs to be adjusted in a way that keeps
the value of T (a, (|kk|* —?) /47?) within reasonable bounds. If we assume that k lies in
the first Brillouin zone, the minimum real part of the second argument of the I' func-

tion will be (|k|*—x2) /412, so setting 17> 1/ ||* —|k|*/2log M eliminates the exponential
growth in the incomplete I' function, where the constant M is chosen to represent the
(rough) maximum tolerated magnitude of the summand with regard to target accuracy.
This adjustment means that, in the worst-case scenario, with growing wavenumber one
has to include an increasing number of terms in the long-range sum in order to achieve a
given accuracy, the number of terms being proportional to ]K!d where d is the dimension
of the lattice.

3.4 Scattering cross sections and field intensities in periodic system

Once the scattering (3.4) or mode problem (3.5) is solved, one can evaluate some useful
related quantities, such as scattering cross sections (coefficients) or field intensities.

For plane wave scattering on 2D lattices, one can directly use the formulae (2.33),
(2.36), taking the sums over scatterers inside one unit cell, to get the extinction and ab-
sorption cross sections per unit cell. From these, quantities such as absorption, extinction
and scattering coefficients are obtained using suitable normalisation by unit cell size, de-
pending on lattice dimensionality.

Ewald summation can be used for evaluating scattered field intensities outside scat-
terers’ circumscribing spheres: this requires expressing VSWF cartesian components in
terms of scalar spherical wavefunctions defined in (3.6). Fortunately, these can be ob-
tained easily from the expressions for the translation operator:

1
Viim (Kr) = Z erm;21m/ (Kr) Voim! (0)/

m'=—1

1
Wepp (KT) = Z Seim2im (K1) Va1, (0), (3.14)

m'=—1

which follows from Egs. (2.18), (2.19) and the fact that all the other regular VSWFs except
for vy1, vanish at origin. For the quasiperiodic scattering problem formulated in Sec-
tion 3.1, the total electric field scattered from all the particles at point r located outside all
the particles’ circumscribing sphere reads, using Egs. (2.25), (3.7), (3.6),

Escat(r): Z an,a,flmurlm(K(r_Rn'ra))

(na)ePtim
1 I+1 \
= Z Zfo,zx,rlm Z Voim' (0) Z Cq—lm,-zlmfa')\,mfm’(_k/r_ra)- (315)
a€Pitlm m'=—1 A=|l-1|+|Tt-2|

In the scattering problem, the total field intensity is obtained by adding the incident field
to (3.15); whereas in the lattice mode problem the total field is directly given by (3.15).
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4 Symmetries

If the system has nontrivial point group symmetries, group theory gives additional un-
derstanding of the system properties, and can be used to substantially reduce the com-
putational costs.

As an example, if the system has a Dy, symmetry and the corresponding truncated
(I—TS) matrix has size NxN, it can be (by the procedure described below) block-
diagonalized into eight blocks of size about N/8xN/8, each of which can be LU-
factorised separately (this is due to the fact that Dy, has eight different one-dimensional
irreducible representations). This can reduce both memory and time requirements to
solve the scattering problem (2.17) by a factor of 64.

In periodic systems (problems (3.4), (3.5)) due to small number of particles per unit
cell, the costliest part is usually the evaluation of the lattice sums in the W (w,k) matrix,
not the linear algebra. However, decomposition of the lattice mode problem (3.5) into the
irreducible representations of the corresponding little co-groups of the system’s space
group is nevertheless a useful tool in the mode analysis: among other things, it enables
separation of the lattice modes (which can then be searched for each irrep separately),
and the irrep dimension gives a priori information about mode degeneracy.

4.1 Excitation coefficients under point group operations

In order to make use of the point group symmetries, we first need to know how they
affect our basis functions, i.e. the VSWFs. Let ¢ be a member of the orthogonal group
O(3), i.e. a 3D point rotation or reflection operation that transforms vectors in R with an
orthogonal matrix Ry:

r— Rer.

With P; we shall denote the action of g on a field in real space. For a scalar field w we
have (Pyw) (r) =w (R 'r), whereas for a vector field w, (Pyw) (r) =Rgw (R, 'r).
Spherical harmonics Y; ,,,, being a basis of the /-dimensional representation of O(3),

transform as [65, Chapter 15]
!

(PeYim) (2)=Yi (Re'8) = 1 Dl (8) Vi (2), (@.1)

m'=—1

where D! (g) denotes the elements of the Wigner matrix representing the operation g.
From thelr def1n1t10ns (2.4) and the properties of the gradient operator under coordinate
transforms, vector spherical harmonics Ay, A3, transform in the same way,

l
(PoAim) @)=} Dy (8) Az (2),

m'=—1

(PgASIm Z Dm m’ A3,l,m’(f)/

m'=—1
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but the remaining set Ay ; ,, transforms differently due to their pseudovector nature stem-
ming from the cross product in their definition:

(PoAqm) (2 Z Dm (&) A1 (R),

m'=—1

—_~—

where D!, (g) = Din . (8) if g is a proper rotation, on, § € SO(3), but for spatial inversion

e (1) = (—=1)"". The transformation
behaviour of vector spherical harmonics directly propagates to vector spherical waves,
cf. (2.2), (2.3):

operation i:r— —r we have Din () =(— ) but D!

/ ——

(P ullm) Z m m’ ullm’ (1‘),

(PguZIm Z Dm m/ llz[m/ (1‘),

m'=—1

and analogously for the regular waves v;,,. For convenience, we introduce the sym-
bol DY, that describes the transformation of both (“magnetic” and “electric”) types of
waves at once:
PguTlm Z Dm m’ urlm’ (1‘) :
m'=—1

Note that this symbol retains the unitarity of the original Wigner matrices,

Z(Dmm’(g)) Dym’(g):(smll' (4-2)
m/
Using these, we can express the VSWF expansion (2.7) of the electric field around origin
in a rotated /reflected system,

oo 41

Z Z Z Z (ﬂ-;[m m,m'’ g)V-L-lmr(Kl') +lemD1:11,m’ (g)urlm/(Kr)>/ (43)

=12l=1m=—Im'=—1

which, together with the T-matrix definition, (2.8) can be used to obtain a T-matrix of a
rotated or mirror-reflected particle. Let T be the T-matrix of an original particle; the T-
matrix of a particle physically transformed by operation g € O(3) is then (following from
Egs. (4.3), (2.8), (4.2))

/l/ *
T’i’lm;T/l’m’: Z Z D le ol (D;’,m’ (g)) . (44)
p=—lp'==1

If the particle is symmetric (so that ¢ produces a particle indistinguishable from the orig-

inal one), the T-matrix must remain invariant under the transformation (4.4), T. Tlm =
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B o (5]
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0

Figure 2: Scatterer orbits under D, symmetry. Particles A,B,C,D lie outside of origin or any mirror planes, and
together constitute an orbit of the size equal to the order of the group, |D;| =4. Particles E,F lie on the yz
plane, hence the corresponding reflection maps each of them to itself, but the xz reflection (or the 7t rotation
around the z axis) maps them to each other, forming a particle orbit of size 2. The particle O in the very origin
is always mapped to itself, constituting its own orbit.

Timorm- Explicit forms of these invariance properties for the most important point
group symmetries can be found in [53].

If the field expansion is done around a point r, different from the global origin, as in
(2.14), we have

co 41

(PE) (w,r)=Y Y ) Z ( i D3y (8) Vet (K (1= Rgry))

=12l=1m=—Im'=—I
+ fpetm Dy (8) Wt (K (T_Rgfp)))- (4.5)

With these transformation properties in hand, we can proceed to the effects of point
symmetries on the whole many-particle system. Let us have a many-particle system
symmetric with respect to a point group G. A symmetry operation g € G determines a
permutation of the particles: p+ 7 (p), p € P; their positions transform as rr , = Ryt),

o, = =Ry, rp. In the symmetric multiple-scattering problem, transforming the whole
field accordmg to g, in terms of field expansion around a particle originally labelled as p

o 4/

(B @n=L ) ) gl( pretm Dt (8) Vet (x (1= Ry1y))
+fp,TlmD:11m’(g)uTlm/(K(r_RgrP)))
oo+l

CE Y Y (D) Vet (x(r—11,)

=1.2l=1m=—Im'=-1

+ fp,rlmD;lm/ (g) Ui/ (K (l‘—l'nqp) ))
oo +I

_YYY Y (g et Dt (8) Ve (¢ (x=1,))

=12l=1m=—Im'=—1

+f”§1qfflmD;11,m' (8) et (x (r—rq))) )
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In the last step, we relabeled g = 7t,p. This means that the field expansion coefficients
ap, fp transform as

aprlm”—> Z a,

m=—1

)rlmDm m’(g)/

‘é’

fP Tlm’ ’—> Z lf < Hp),Tim ;[nlm’ (g) : (46)
mM——

For a given particle p, we will call the set of particles onto which any of the symmetries
maps the particle p, i.e. the set {74(p);g€ G}, as the orbit of particle p. The whole set
P can therefore be divided into the different particle orbits; an example is in Fig. 2. The
importance of the particle orbits stems from fact that the expansion coefficients belonging
to particles in different orbits are not related together under the group action in (4.6). As
before, we introduce a short-hand pairwise matrix notation for (4.6)

For T () fact ) 4.7)

and also a global block-matrix form
a3y T (g)a,

FE @) f 4.8)

If the particle indices are ordered in a way that the particles belonging to the same or-
bit are grouped together, J(g) will be a block-diagonal unitary matrix, each block (also
unitary) representing the action of g on one particle orbit. All the J(g)s make together a
(reducible) linear representation of G.

4.2 Irrep decomposition

Knowledge of symmetry group actions J(g) on the field expansion coefficients give us
the possibility to construct a symmetry adapted basis in which we can block-diagonalise
the multiple-scattering problem matrix (I—TS5). Let I', be the d,,-dimensional irreducible
matrix representations of G consisting of matrices D' (¢). Then the projection operators

kl _|G]Z( > (&), kI=1,-,dy

geG

project the full scattering system field expansion coefficient vectors a,f onto a subspace
corresponding to the irreducible representation I',. The projectors can be used to con-
struct a unitary transformation U with components

u”’i?PTlm |G| Z (Drn ) g)p’r’l’m’(nri);prlm' (4.9)
g€G
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where 7 goes from 1 to d, and i goes from 1 to the multiplicity of irreducible repre-
sentation I';, in the (reducible) representation of G spanned by the field expansion co-
efficients a or f. The indices p/,7/,lI',m’ are given by an arbitrary bijective mapping
(n,r,i)— (p',',I',/m") with the constraint that for given n,r,i there are at least some non-
zero elements Uy, p,. For details, we refer the reader to textbooks about group rep-
resentation theory, e.g. [6, Chapter 4] or [3, Chapter 2]. The transformation given by U
transforms the excitation coefficient vectors 4, f into a new, symmetry-adapted basis.

One can show that if an operator M acting on the excitation coefficient vectors is
invariant under the operations of group G, meaning that

¥gE€G:](g)MI(9)' =M,
then in the symmetry-adapted basis, M is block diagonal, or more specifically

5TP5U

s.a.b. s.a.b.
A4Fr1f/ﬂ EZAdfqu’W

Both the T and S operators (and trivially also the identity I) in (2.17) are invariant un-
der the actions of whole system symmetry group, so (I—TS) is also invariant, hence
U(I-TS)U" is a block-diagonal matrix, and the problem (2.17) can be solved for each
block separately.

From the computational perspective, it is important to note that U is at least as sparse
as J(g) (which is “orbit-block” diagonal), hence the block-diagonalisation can be per-
formed fast.

4.3 Periodic systems

Also for periodic systems, M(w,k) = (I-T(w)W(w,k)) from the left hand side of
Egs. (3.4), (3.5) can be block-diagonalised in a similar manner. However, in this case,
W (w,Xk) is in general not invariant under the whole point group symmetry subgroup of
the system geometry due to the k dependence. In other words, only those point symme-
tries that the ¢’** modulation does not break are preserved, and no preservation of point
symmetries happens unless k lies somewhere in the high-symmetry parts of the Brillouin
zone. However, the high-symmetry points are usually the ones of the highest physical
interest, for it is where the band edges are typically located. This subsection does not
aim for an exhaustive treatment of the topic of space groups in physics (which can be
found elsewhere [3, 6]), here we rather demonstrate how the group action matrices are
generated on a specific example of a symmorphic space group.

The transformation to the symmetry adapted basis U is constructed in a similar way
as in the finite case, but because we do not work with all the (infinite number of) scatterers
but only with one unit cell, additional phase factors e’ ™ appear in the per-unit-cell group
action J(g): this can happen if the point group symmetry maps some of the scatterers
from the reference unit cell to scatterers belonging to other unit cells. This is illustrated
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Figure 3: Representing symmetry action on electromagnetic Bloch waves in a lattice with p6m wallpaper group
symmetry. In a hexagonal array with five particles (labeled A-E) per unit cell, we first choose into which unit
cells do the particles on unit cell boundaries belong. a) At M point, the little co-group contains a D; point
group; the unit cells can be divided into two groups (alternating horizontal rows) with opposite sign. The
horizontal mirror operation 0y, maps the particles from a single unit cell to each other. However, the vertical
mirror operation 0y; maps them onto particles belonging to different unit cells, introducing possible phase factors
in the point group action: B,C,D map onto B,C,D belonging to different unit cell from same phase group, so
no additional phase is needed; however, A,E map onto E,A belonging to unitcells with relative phases £,
therefore the corresponding action matrix blocks will carry a factor —1. b) At K point, little co-group contains
a D3 point group, and the unit cells divide into three groups with relative phase shift ¢271/3 The horizontal
mirroring 0y, again does not introduce any additional phase. However, the C3 rotation mixes particles belonging
to different unit cells, so for example particle D maps onto particle D, but with additional phase factor e=27/3,

in Fig. 3. Fig. 3a shows a hexagonal periodic array with p6m wallpaper group symmetry,
with lattice vectors a; = (4,0) and a, = (a /2,v/3a/ 2) . We delimit our representative unit
cell as the Wigner-Seitz cell with origin in a D¢ point group symmetry center (there is one
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per each unit cell); per unit cell, there are five different particles placed on the unit cell
boundary, and we need to make a choice to which unit cell the particles on the boundary
belong; in our case, we choose that a unit cell includes the particles on the left as denoted
by different colors. If the Bloch vector is at the upper M point, k =M; = (0,27t/+/3a), it
creates a relative phase of 7w between the unit cell rows, and the original Dy symmetry is
reduced to D;. The “horizontal” mirror operation ¢, maps, according to our boundary
division, all the particles only inside the same unit cell, e.g.

fOA '&)T(sz)fOEz

fOC '&)T(sz)fo(:/

as in Eq. (4.6). However, both the “vertical” mirroring 0,, and the C; rotation map the
boundary particles onto the boundaries that do not belong to the reference unit cell with
n=(0,0), so we have, explicitly writing down also the lattice point indices n,

fOA ’%T(Uyz) f(O,l)E/

foc %f(UyZ)f(LO)C'

but we want J(g) to operate only inside one unit cell, so we use the Bloch condition
Fau=fo,u (k)eXRn: in this case, we have fone= foue™12 = fo, V= fo,, f1,0) =Mz fy —
e'” fox = — foa, SO

fOA’%_]N(Uyz)fOEI
foc ’%T(U—yz)fOC-

If we set instead k=K =(471/34,0), the original D¢ point group symmetry reduces to D3
and the unit cells can obtain a relative phase factor of e~27/3 (blue) or e2™/3 (red). The 0,
mirror symmetry, as in the previous case, acts purely inside the reference unit cell with
our boundary division. However, for a counterclockwise C3 rotation as an example we
have (see Fig. 3b)

foar=s J(C3) fo,-1)e =€""""°] (Cs) foE,
focr= J(C3) f1,-1ya=e"2""3](Cs) fon,
fopr=s J(C3) f1,-1yp=¢">""*] (C3) fos,

because in this case, the Bloch condition gives f 1), = foae®(-22) = fo o4/ =

f0a627ri/3 :fOoc/ f(l,—l)oc :aneiK-(alfaz) — efzm‘/San'

Having the group action matrices, we can construct the projectors and decompose the
system into irreducible representations of the corresponding point groups analogously to
the finite case (4.9). This procedure can be repeated for any system with a symmorphic
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space group symmetry, where the translation and point group operations are essentially
separable. For systems with non-symmorphic space group symmetries (i.e. those with
glide reflection planes or screw rotation axes) a more refined approach is required [3, 6].

4.4 Comment on computational complexity

The speedup and memory saving estimates mentioned in the beginning of this section
are based on the assumption that the system is directly solved for example using LU fac-
torisation. LU factorisation itself requires a considerable amount of time proportional to
that of matrix-matrix multiplication, typically O(N?), but (with pivoting) provides nu-
merically robust results and once done, solving the scattering problem for each incident
field then costs only time proportional to that of matrix-vector multiplication, typically
O(N?). The practical bottlenecks of this approach thus lie in the LU factorisation time
and the memory demand O(N?) for the LU factorised matrix. If there are Q irreducible
representations of the symmetry group and N,, degrees of freedom belonging to the n-
th irrep (N = Z,?:an; in an ideal case N, = N/Q), the time required to get all the LU
factorisations is reduced by a constant factor of 2§:1N,§ /N3 (i.e. Q2 in the ideal case),

the memory to save all the matrix blocks by a factor of 25:1 N2/N? (i.e. Q~!in the ideal
case), with further possible improvements for irreducible representations with 4 >1. Sim-
ilar speedup and memory savings are achieved for exact calculation of resonances using
the Beyn’s algorithm which relies heavily on singular value decomposition with O(N?)
time complexity.

The approach above can be put into contrast with iterative solvers, which can solve
a single scattering problem with a given incident field by repeating matrix-vector oper-
ations. Depending of the convergence speed of the particular solver for given data, this
might or might not be faster than performing the full LU decomposition, and instead of
calculating and saving the whole matrix, its elements can be evaluated ad hoc, removing
the memory bottleneck. (However, repeated evaluations of the translation operators in
each operation incur a significant constant factor to the evaluation time.) Using the multi-
level version of the fast multipole method (ML-FMM) [4,14,15,38], one can achieve a time
complexity of O(NlogN) instead of O(N?) per iteration step, which makes the iterative
approach attractive for very large amounts of scatterers. In principle, one could adapt
the symmetry-based decomposition described here also for use with ML-FMM, but the
speedup would be far less pronounced, if any.

5 Applications

Finally, we present some results obtained with the QPMS suite. Scripts to reproduce these
results are available under the examples directory of the QPMS source repository.

For further results, used for explaining experiments, see Refs. [18] (scattering, finite
system), [16,45] (approximate lattice mode search using a real-frequency-only scan), and
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[59] (resonances of a finite system). Note that in [16,18], T-matrices were calculated using
a buggy version of SCUFF-EM.

5.1 Optical response of a square array; finite size effects

Our first example deals with a plasmonic array made of silver nanoparticles placed in a
square planar configuration. The nanoparticles have the shape of a right circular cylinder
with 30 nm radius and 30 nm in height. The particles are placed with periodicity p, =
py =375 nm into an isotropic medium with a constant refraction index n =1.52. For
silver, we use Drude-Lorentz model with parameters from [47], and the T-matrix of a
single particle we compute using the null-field method (with cutoff I .x = 6 for solving
the null-field equations).

We consider finite arrays with Ny x N, =40x40, 70 x70, 100x 100 particles and also
the corresponding infinite array, and simulate their absorption when irradiated by plane
waves with incidence direction lying in the xz plane. We concentrate on the behaviour
around the first diffracted order crossing at the I point, which happens around frequency
2.18eV/h. Fig. 4 shows the response for the infinite array for a range of frequencies;

y polarisation X (z) polarisation
Oscat Oscat
2.20
d 0.08
2215
0.07
2.10
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- 220 0.05
9 £
3 2
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&l 0.03
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2 : .
0.01
2215 | i
2.10 0.00
-0.5 0.0 05 -0.5 0.0 0.5
Kky/um™=1 Kx/um~1

Figure 4: Response of an infinite square array of silver nanoparticles with periodicities py = py =375 nm to
plane waves incident in the xz-plane, with y-polarised waves (left), and x-polarised waves (right). The images
show extinction, scattering and absorption cross section per unit cell.
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Figure 5: Comparison of optical responses of differently sized square arrays of silver nanoparticles with the
same periodicity px =py =375 nm. In all cases, the array is illuminated by plane waves linearly polarised in
the y-direction, with constant frequency 2.15 eV /fi. The cross sections are normalised by the total number of
particles in the array.

here in particular we used the multipole cutoff /. =3 for the interparticle interactions,
although there is no visible difference if we use Imax =2 instead due to the small size of
the particles. In Fig. 5, we compare the response of differently sized array slightly below
the diffracted order crossing. We see that far from the diffracted orders, all the cross
sections are almost directly proportional to the total number of particles. However, near
the resonances, the size effects become apparent: the lattice resonances tend to fade away
as the size of the array decreases. Moreover, the proportion between the absorbed and
scattered parts changes as while the small arrays tend to more just scatter the incident
light into different directions, in larger arrays, it is more “likely” that the light will scatter
many times, each time sacrificing a part of its energy to the ohmic losses.

The finite-size cases in Fig. 5 were computed with quadrupole truncation / <2 and
using the decomposition into the eight irreducible representations of group Dy,. The
100 x 100 array took about 4 h to compute on Dell PowerEdge C4130 with 12 core Xeon E5
2680 v3 2.50GHz, requiring about 20 GB of RAM. For smaller systems, the computation
time decreases quickly, as the main bottleneck is the LU factorisation. In any case, there
is still room for optimisation in the QPMS suite.

5.2 Lattice mode structure of a square lattice

Next, we study the lattice mode problem of the same square arrays. First we consider
the mode problem exactly at the I' point, k =0. Before proceeding with more sophisti-
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Figure 6: Singular values of the mode problem matrix [M(w,k=0)],3 for a real frequency interval. The

irreducible representations of Dy, are labeled with different colors. The density of the data points on the
horizontal axis is 1/meV.

cated methods, it is often helpful to look at the singular values of mode problem matrix
M (w,k) from the lattice mode equation (3.5), as shown in Fig. 6. This can be always done,
even with tabulated /interpolated material properties and/or T-matrices. An additional
insight, especially in the high-symmetry points of the Brillouin zone, is provided by de-
composition of the matrix into irreps — in this case of group Dy, which corresponds to
the point group symmetry of the array at the I' point. Although in the picture none of the
SVDs hits manifestly zero, we see two prominent dips in the E’ and AY irrep subspaces,
which is a sign of an actual solution nearby in the complex plane. Moreover, there might
be some less obvious minima in the very vicinity of the diffracted order crossing which
do not appear in the picture due to rough frequency sampling.

As we have used only analytical ingredients in M (w, k), the matrix is itself analytical,
hence Beyn’s algorithm can be used to search for complex mode frequencies, which is
shown in Fig. 7. The number of the frequency points found is largely dependent on the
parameters used in Beyn’s algorithm, mostly the integration contour in the frequency
space. Here we used ellipses discretised by 250 points each, with edges nearly touching
the empty lattice diffracted orders (from either above or below in the real part), and
with major axis covering 1/5 of the interval between two diffracted orders. The residual
threshold was set to 0.1. At the I' point, the algorithm finds the actual complex positions
of the suspected E’ and A7 modes without a problem, as well as their continuations to
the other nearby values of k. However, for further k it might “lose track”, especially as
the modes cross the diffracted orders. As a result, the parameters of Beyn’s algorithm
often require manual tuning based on the observed behaviour.
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Figure 7: Solutions of the lattice mode problem [M(w,k)] ;<5 found using the Beyn's method near the first
diffracted order crossing at the I point for k;,=0. At the I' point, they are classified according to the irreducible
representations of Dy,.

5.3 Effects of multipole cutoff

In order to demonstrate some of the consequences of multipole cutoff, we consider a
square lattice with periodicity p,=p,=>580 nm filled with spherical golden nanoparticles
(with Drude-Lorentz model for permittivity; one sphere per unit cell) embedded in a
medium with a constant refractive index n =1.52. We vary the multipole cutoff Iy, =
1,---,5 and the particle radius ¥=>50 nm, - - - ,300 nm (note that the right end of this interval
is unphysical, as the spheres touch at r =290 nm) We look at the lattice modes at the T’
point right below the diffracted order crossing at 1.406 eV using Beyn’s algorithm; the
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Figure 8: Consequences of multipole degree cutoff: Eigenfrequencies found with the Beyn's algorithm for an
infinite square lattice of golden spherical nanoparticles with varying particle size.

integration contour for Beyn’s algorithm being a circle with centre at w=(1.335+0i)eV /h
and radius 70.3 meV /%, and 410 sample points. We classify each of the found modes as
one of the ten irreducible representations of the corresponding little group at the I' point,
Dygy,.

The real and imaginary parts of the obtained mode frequencies are shown in Fig. 8.
The most obvious (and expected) effect of the cutoff is the reduction of the number of
modes found: the case Imax =1 (dipole-dipole approximation) contains only the modes
with nontrivial dipole excitations (x,y dipoles in E’ and z dipole in A}). For relatively
small particle sizes, the main effect of increasing Imax is making the higher multipolar
modes accessible at all. As the particle radius increases, there start to appear more non-
negligible elements in the T-matrix, and the cutoff then affects the mode frequencies as
well.

Another effect related to mode finding is that increasing Imax leads to overall decrease
of the lowest singular values of the mode problem matrix M (w, k), so that they are very
close to zero for a large frequency area, making it harder to determine the exact roots of
the mode equation (3.5), which might lead to some spurious results: Fig. 8 shows modes
with positive imaginary frequencies for Ii,ax >3, which is unphysical (positive imaginary
frequency means effective losses of the medium, which, together with the lossy particles,
prevent emergence of propagating modes). However, the spurious frequencies can be
made disappear by tuning the parameters of Beyn'’s algorithm (namely, stricter residual
threshold), but that might lead to losing legitimate results as well, especially if they are
close to the integration contour. In such cases, it is often helpful to run Beyn’s algorithm
several times with different contours enclosing smaller frequency areas.
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6 Summary

We presented two major enhancements of the electromagnetic multiple-scattering T-
matrix method: 1) Employing Ewald summation techniques enables very efficient com-
putation of lattice modes and optical response of infinite periodic nanoparticle struc-
tures. 2) Exploiting possible symmetries of the system by transformation into symme-
try adapted basis reduces the requirements on computational resources considerably,
enabling simulations of finite systems with tens of thousands of scatterers. These en-
hancements are included into the QPMS software suite, which we hereby make publicly
available under the GNU General Public License.
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1 Periodic Green’s functions vs. VSWF lattice sums

1.1 Some definitions and useful relations

H(d)=h (1d))Yp"(d),

g (d)=ji(|d)) v (a).

Dual spherical harmonics and waves:
/Y,V"Y’W’dnz(sl,,,(sm,m,,
g™ (@ =ji(ld))y"(a).

Expansion of a plane wave:

elrr 47r21”j”” (xr) Y™ ( 47'(21”% kr) Y™ (#).

This one is also convention independent (similarly for H]"):
T (1) =(=1) T (x).
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1.2 Helmholtz equation and Green’s functions (in 3D)

Note that the notation does not follow Linton’s (where the wavenumbers are often im-
plicit)

(V2+K2) G®) (x,x0) =0(x—x0),

() (xx0) = G (X ) o —E ol = — 200 (el
Gy (xx0) =Gy (x=xp) == x| 3 hy (k[x=xo|) = \/E%(K!X xo|)-
In case of wacky conventions, G(()K) (x,x0) =— %7—[8 (r|x—x0l)-
0
Lattice GF [2, (2.3)]:
G (s, k)= Y G§(s—R)e*R. (1.1)
ReA

1.3 GF expansion and lattice sum definition

Let’s define
Z Hl S ‘|‘ R lk R,
REA

and also its dual version

ZrH S+R ) 1kR‘
ReA

Inspired by [2, (4.1)]: assuming that s¢ A, let’s expand the lattice Green’s function around
s:
G( ) (s+1,k) :—ZKZTZ s, k Kr),

and multiply with a dual SH + integrate

/ A0, G (s41,K) Y (8) = —ix Y1 (5,K) i (i |x]) OOy
I,m

— it} (s,%)jy (x|x]). (1.2)

The expansion coefficients 7/" (s,k) is then typically extracted by taking the limit |r| — 0.
The relation between 0" (s, k) and 7" (s,k) can be obtained e.g. from the addition
theorem for scalar spherical wavefunctions [2, (C.3)],

Hi'(a+b) =Y Si™ (b) J" (a), a| <[b],
I'm’

where for the zeroth degree and order one has [2, (C.3)]"

So’ (b) = VATH]" (~D).

*A totally convention independent version looks like Sgl’il’ (b)=Y] ’H;,’", (—b), but the Y{ will cancel with the

expression for GF anyways, so no harm to the final result.



From the lattice GF definition (1.1)

Gl )(s+r k)= —iK ZHO (s+r—R))e™R
TTReA
—iK

= ZHO (s+r—R))e*R
ReA

. T L LS k(s R) T (e

ReAl’m’

——ix Z YA (—r(s—R)).T}" (k) e,

and multiplying with a dual SH and integrating

/dQ G (s J) Y (2) = —ix ¥ Y HI™ (—(s—R))ji (x|t Oy Bymre™
ReA Im
=—ix ) %;f"’<K<—s+R>>fw<xrrr>eik'R
ReA

= —ixoy™ (—s,) i (x|r|),
and comparing with (1.2) we have

T (s,4) = 0f" (~5,k).

2 Derivation of the 1D and 2D lattice sum

With [2] in hand, the short-range part is rather easy. Let’s get the long-range part.
We first need to find the long-range part of the expansion coefficient

S A (x) —_
T (s,k)_K],l,(KM)/erGA (s+1,K) Y (£). 2.1)

We take [2, (2.24)] with slightly modified notation (kx =K+k)
G ()= Ly g / R L
A 272 A L 1/5
or, evaluated at point s+r instead,
G(l 5K) (s+r) 1 Z eikK-(err)/ooem/:K272t2/4e]sLJrrL’Z/tztldcdt.
The integral can be by substitutions taken into the form
coexp(ir/2)

GAS\L'K)(S—FI'): Z oKk s+r)/ e_Te_|SL+rL|2K27rzn/4TT_%d"['
ndC/ZAKeA* K272m/4772



Let’s do the integration to get 7" (s, k)

/ dorcgl”” (s+1) Y (8)

Z il (s-hr coexp(irt/2)
__ 40, Y. ki /
27d/2 A /2A / KGAX 0 /4

The r-dependent plane wave factor can be also written as

elkier — pilki|rki :47T2il T ([kk|1) V" (kAK)
Im

22,2 d
—T S| +r K 4T c
e ‘ + L | ’ykK / T 2 dT.

=4y (e 1) Y™ ()Y (K ),
Im
SO
/ d0, G (s+1) Y} (2)

_ 1 P |
__anc/zA/erY' (r)27t.A

. R coexp(irr/2) B 25
x Y e™es Y amilji (Kl x]) Y] (3) Y] <k1<)/ e~ Te BTG AT =% g
KeA* Im Y /40

We also have
2 2
e lsiri Pk /At — o= (IseP+ro+2r s, )ik /4t

2 2,2
—\ulzxz’ﬁ(/hfo:l (’rj‘| +2rJ"SJ‘)K Tk
—¢ | 4T ’
]:0]'

hence

/ A0, G (s+1) Y ()

sy [0 () e eyl e Y/ 6 " (k)

KeA*

00 (!r *+42r, s >K2 2 \/ in/2

% Zl _ 1 1L 1 ,)/k]( /*ooeXP(”T )e_Te_‘SL‘ZKzry%(/ALTT_dTC_]‘dT

) 4 K2k /47
(d
N A)

1 o Al
=g L e il (e ) v (i) L
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o K
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1
22 A

© (1)
Z eleSZ4m Ji (kx| [x]) Y™ (kK>Z(:)( !) A](dA)
=

KeA* Im ]

2' ! .
(K’ékK ) ] Z /d_QrY’/m (f) Yl/m (f') ’ri |2(]—k) (er 'SL)k~
k=0

The integral A](-d") is (for the 2D case) equivalent to that in [1].

If we label |r, ||s) |cos¢=r, -s,, we have

/ A0, G (s+1) Y ()

1 1 S
ndc/zAKgka 34t ([l [x]) " <kK>
d K 2j j )
; 0 (7)Yl ) a0 () e cose’

and if we label |r|sind=r |

/ A0, G (s+1) V)" (2)
1

1 i —1j K 2j
g L o LA (e ) (kK)z( ]!> Ly
KeA* =0
XZ| | o k (2]s.]) /dQ ;" (2 )(Slnl9) k(COS(p)k.

Now let’s put the RHS into (2.1) and try eliminating some sum by taking the limit |r| —
0. We have ji (|k|[r]) ~ (|kx][x])'/

jir (i [x]) ~ (xc[x])" /
T (s,k)

(214-1)!1; the denominator from (2.1) behaves like
(2I"+1)!1. The leading terms are hence those with |r| =2k g

— —i olkKs g |k K| ~
= T (2 +1) ”K;\* - Z4m i ()

© (~1)/ K j .
xz(ﬂ)A}W(%) 25,,_1,2j_k(z|sL|)k/d0ry, (#) Y™ (2) (sin®)" ' (cosp)*.
j=0 /) k=0

Let’s now focus on rearranging the sums; we have

]

=Y Y. ) driziif (U Ljk) ZZZ(SV 1ok f (U121 =1 +1).
1=0j=0k=0

1=0j=0k=0



We have 0<k<j, hence 0<2j—1"+1<j, hence —2j<—I'"+1<—j, hencealso I’ —2j<I<I'—j,
which gives the opportunity to swap the /,j sums and the I-sum becomes finite; so also
consuming E;(ZO O —10j—k We get

) I'—j
s=Y Y fILi2j—I'+I).

j=01=max(0,l'—2j)

Finally, we see that the interval of valid ! becomes empty when I’ —j <0, i.e. j>1; so we
get a finite sum

I I'—j
s=Y. X fUL2-I'+D).
j=01=max(0,I'-2j)
Applying rearrangement,

m' _ i @r+nn ikk-s 4 (_1)j (dn) ( KV 7
L (S’k)_zndf/zAK «’ Kg*e E) ! AJ' ( 2 )

%f z 2jr+1 kg
X it (2s )7 T
I=max(0,I'—2j) (2l+1)!!

! / 7
< 3 (k) / ALY () Y™ () (sin®) " (cos )P,

m=—I
or replacing the angles with their original definition,

' _ - @r+nn s (=1 (@) KYK\ Y

llij ! 2j—1'+1 kx|’
X it (2ls )7 T
I=max(0,I'—2j) (2l+1)!!

I A , e [\ ey \ T
< YW (K) [don (f)Y[’”(i')( - ) < ) ,

1 i |[s]

and if we want a Ul’?’ (s,k) instead, we reverse the sign of s and replace all spherical
harmonics with their dual counterparts:

! =i (241! ks r (—1)j (da) (K7 \
Oy (S/k)_27‘[d”/2./41€ Kl/ Kezj:\*e ];) ]l A] < 2 )
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and remembering that in the plane wave expansion the “duality” is interchangeable,
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_ 4 (dp)

= 1,1,m! m,j

The angular integral is easier to evaluate when dy =2, because then r, is parallel (or
antiparallel) to s, which gives

@) roosy \7 it pox v o (1LY
A L=\ / dO. Y (®)Y,"(®) | 7

r;-s]| 1|

and if we set the normal of the lattice correspond to the z axis, the azimuthal part of the
integral will become zero unless m’ =m for any meaningful spherical harmonics con-
vention, and the polar part for the only nonzero case has a closed-form expression, see
e.g. [2, (A.15)], so one arrives at an expression similar to [1, (3.15)]

i14+1

A (le8) == /22 ((1=m) /2)1((1+m) /2)!
‘ ol
X L ey ) (1),

KeA* j=0

1 (—xs )7 (k| /)"
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(2j=s)!(s=N)! (3(1—m—s))1 (L (I+m—s))! (2.2)

j<s<min(2j,l—|m|)
I—j+|m|even

wheres | =s-2=s -2. If dy =1, the angular integral becomes more complicated to evalu-
ate due to the different behaviour of the r, -s| /|r | ||s | factor. The choice of coordinates
can make most of the terms disappear: if the lattice is set parallel to the z axis, Al(’l,l), ' m,j
is zero unless m =0, but one still has

-1
2

1
1 /
Al(/,l),m’,O,j:n(sm/,l/—l—Zj)\;O/\l/m//71de1771 (X) PZO (X) (1—x2) ,



where Aj,, are constants depending on the conventions for spherical harmonics. This
does not seem to have such a nice closed-form expression as in the 2D case, but it can
be evaluated e.g. using the common recurrence relations for associated Legendre poly-
nomials. Of course when s =0, one gets relatively nice closed expressions, such as those
in [2].
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