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Abstract. We consider reduced order modelling of elastodynamics with proper or-
thogonal decomposition and isogeometric analysis, a recent novel and promising dis-
cretization method for partial differential equations. The generalized-α method for
transient problems is used for additional flexibility in controlling high frequency dissi-
pation. We propose a fully discrete scheme for the elastic wave equation with isogeo-
metric analysis for spatial discretization, generalized-α method for time discretization,
and proper orthogonal decomposition for model order reduction. Numerical conver-
gence and dispersion are shown in detail to show the feasibility of the method. A va-
riety of numerical examples in both 2D and 3D are provided to show the effectiveness
of our method.
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1 Introduction

Elasticity models are essential in applied mechanics and engineering. The temporal char-
acteristics of elasticity have many applications in elastodynamics, e.g., building structure
analysis [1], marine survey [2], geophysics [24, 25] and seismology [18, 26]. Numerical
approaches for such problems include finite elements [27, 28], spectral elements [29, 30],
mortar elements [31, 32], discontinuous Galerkin method [33, 34], etc. High accuracy can
be achieved with large temporal or spatial resolution. The computational costs of dis-
cretization methods for such models with time, physical, geometry parameters are high
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when either time step or spatial size is relatively small. Of course, we can reduce the
number of degrees of freedom by adaptive methods with locally refining the meshes.
However, a posterior error estimates are not easy to be obtained for complex models
with real applications. For real-time simulations and parameter optimization problems,
rapid evaluation is essentially required but it is hard to achieve when the number of de-
grees of freedom of the discretized system is large. In such cases, we therefore resort to
reduced order modeling [3].

Proper orthogonal decomposition (POD) is one popular reduced order modeling ap-
proach for problems of various interests in engineering such as turbulent flows [4, 39],
weather forecasting and optimal control problems (see [3]). POD has been used widely
in different fields with different names, e.g. principle component analysis in statistics
and Karhunen-Loeve expansion in stochastic analysis. The combination of POD with
Galerkin methods for time-dependent partial differential equations (PDEs) [5–7] extract
pertinent information of the model system from the high-fidelity instances. The so-called
snapshots are obtained for the construction of a low-dimensional basis together with the
corresponding field information. A low-dimensional system which contains most infor-
mation of the original system is built through the new basis. The error between the nu-
merical solution from POD-Galerkin method and the exact solution consists of two parts,
i.e., the error between snapshot and exact solution and the error between POD solution
and snapshot [8, 9]. High-fidelity approximations obtained from a numerical discretiza-
tion method for PDEs are crucial for obtaining accurate snapshots and POD-Galerkin
solutions.

As an emerging method in recent years, Isogeometric analysis (IGA) [13] has been
successfully applied to various fields including structural mechanics [12], fluid dynam-
ics [10], acoustics [9, 37], electromagnetism [11], etc. IGA represents a generalization of
the isoparametric finite element method and uses NURBS as basis functions, which pos-
sess advantages of exact geometry representation, high global regularity (up to Cp−1-
continuous with p denoting the degree of the piecewise polynomials of the basis), and
convenient integration into CAD software using NURBS design workflow. Complex
multi-patch domains can be partitioned exactly in IGA. Moreover, efficient h-, p-, k- re-
finements and hierarchical scheme [40] can be used to increase accuracy and flexibility of
numerical solutions.

The motivation of this paper stems from the fact that the accuracy of the reduced order
solution obtained with a POD-Galerkin method first requires snapshots’ high-fidelity at
a reasonable expense of computational efforts. IGA can produce highly accurate numer-
ical solutions for PDEs efficiently. The natural combination of IGA and POD has been
successfully applied in parabolic problems [8, 42], convection dominated convection-
diffusion-reaction [36], acoustic wave equation [9] and shape optimization problem [41].
The paper continues the previous works [8,9,36] and generalizes this model order reduc-
tion method for acoustic wave [9] to elastodynamics. We consider numerical dispersion
of the method here. Dispersion analysis reveals how accurate the numerical schemes we
proposed are with respect to different wave vectors. Dispersion analysis for vibrations
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of rods and beams has been performed [35]. Both isotropic and anisotropic elastody-
namic problems with IGA have been proposed in [20]. Numerical dispersion in 3D with
spectral element method is discussed in [21]. In this paper we focus on the numerical
dispersion of IGA-POD method for model order reduction. We solve the embedded IGA-
POD-elastodynamic problem and compare numerical errors between the exact solution
and POD solution with respect to different wave numbers and directions. A reliable time
discretization scheme is necessary here in order to capture sufficient temporal informa-
tion. High-order methods [22,23] are available in literature. We choose the generalized-α
method for the extra control in high-frequency dissipation.

The rest of the paper is organized as follows. In Section 2, we introduce model for-
mulations of the elastodynamic problem, recall the basics of IGA and POD, and derive
spatial and temporal discretizations of the model. In Section 3, we analyze numerical
dispersion and numerical convergence. In Section 4, numerical examples are presented
to show effectiveness and feasibility of our approach. Finally, the conclusion follows.

2 Problem formulation

Let Ω⊂R
d (d= 2,3) be an open bounded domain with Lipschitz continuous boundary

∂Ω. The L2 inner product and the corresponding norm are denoted by (·,·) and ‖·‖,
respectively. Denote H1(Ω):={v∈L2(Ω)|Div∈L2(Ω),i=1,··· ,d} with Di being the partial
distributional derivative with respect to xi. We denote by (·,·)k the scalar or vectorial Hk

inner product and define the corresponding norm ‖v‖k :=
√
(v,v)k and semi-norm |·|k.

2.1 Spatial discretization

We consider a linear elastic wave equation with a damping factor. Denote by T > 0 the
final time and by ρ:Ω 7→R the medium density. Assume that ∂Ω=ΓD∪ΓN with ΓD∩ΓN=
∅. Let g and h be given functions associated with Dirichlet and Neumann boundary
conditions, respectively. Let u0(x) and v0(x) be initial displacement and velocity data,
respectively. Denote by f the function of external force and by ζ the damping factor. We
consider:





ρ
∂2u

∂t2
(t)+2ρζ

∂u

∂t
(t)−∇·σ(u(t))+ρζ2u(t)= f (t) in Ω×(0,T],

u(t)= g(t) on ΓD×(0,T],

σ(u(t))·n=h(t) on ΓN×(0,T],

u(0)=u0 in Ω,

∂u

∂t
(0)=v0 in Ω,

(2.1)
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where σ(u) and ǫ(u) are the stress tensor and strain tensor, respectively with





σ(u)=λ∇·uI+2µǫ(u),

ǫ(u)=
1

2
(∇u+∇uT),

(2.2)

in which I is an identity tensor, λ and µ in (2.2) are Lamé coefficients that can be computed
from medium’s Youngs modulus E and Poisson’s ratio ν as

λ=
νE

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
.

Another two important material parameters of the elastic wave problem, compressional
wave velocity cp and shear wave velocity cs are defined:

cp=

√
λ+2µ

ρ
, cs =

√
µ

ρ
.

Beside Dirichlet and Neumann boundary conditions that will be mentioned below, there
are other types of boundary conditions such as symmetric boundary condition and trans-
parent boundary condition [17,18,20,38]. Here we only consider Dirichlet and Neumann
boundary conditions for simplicity.

2.1.1 Isogeometric analysis

In this part we recall some basic formulations of B-splines and NURBS [13]. For
any α (1 ≤ α ≤ d) and positive integers nα and pα, we define the knot vector Ξα :=
{ξ1,α,ξ2,α,··· ,ξnα+pα+1,α} consisting of nondecreasing knots, i.e., ξ1,α≤ξ2,α≤···≤ξnα+pα+1,α.
Knots may be repeated with the number of repetitions called multiplicity. A knot vector
is assumed to be open, i.e., both of the first and the last pα+1 knots are repeated, where pα

is the polynomial degree. Let Bi,α (i= 1,2,··· ,nα) denote B-spline basis functions, which
are defined recursively as [14]

Bi,0(ξ)=

{
1 if ξi ≤ ξ≤ ξi+1,

0 otherwise,

Bi,α(ξ)=
ξ−ξi

ξi+α−ξi
Bi,α−1(ξ)+

ξi+α+1−ξ

ξi+α+1−ξi+1
Bi+1,α−1(ξ).

Each B-spline basis function is everywhere pointwise C∞-continuous except at knots ξi,α,
where it is Cpα−κi,α-continuous if the multiplicity of the knot is κi,α with 1≤ κi,α < pα+1.
The B-spline basis functions are non-negative, locally supported in (ξi,α,ξi+pα+1,α) (the
knot span), and constitute a partition of unity [13], i.e., ∑

nα
i=1 Bi,α=1. We define the space of

univariate B-splines Bα ≡B(Ξα;pα) := span{Bi,α}i=1,···,nα
. An example of quadratic non-

uniform B-spline is presented in Fig. 1. Note that basis functions are interpolatory at
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Figure 1: B-spline basis functions with knot vector. Ξ2={0,0,0,1,1,2,3,4,5,5,5}.

ξ =0,ξ =5, and also at ξ =1, the location of a repeated knot, where only C0-continuity is
attained. Elsewhere the functions are C1-continuous.

Multivariate tensor product B-splines are defined based on d knot vectors Ξα, α =
1,··· ,d. Let Ω̂ := (0,1)d ⊂ R

d be an open parametric domain. The knot vectors parti-
tion Ω̂ into “mesh” elements, which constitute a mesh Qh ≡ Qh(Ξ1,··· ,Ξd) := {Q =
⊗d

α=1(ξiα ,α,ξiα+1,α) | pα+1≤iα≤nα−1}. Let us denote ĥQ :=diam(Q) for all Q∈Qh and the

global mesh size ĥ:=maxQ∈Qh
{ĥQ}. For notational convenience, we denote a multi-index

i:=(i1,··· ,id) and a corresponding multi-index set I :={i=(i1,··· ,id) | 1≤iα≤nα for 1≤α≤
d}. Then, for each multi-index i∈ I, we define the tensor product B-spline basis functions
Bi : Ω̂→R, Bi :=Bi1,1⊗···⊗Bid,d and corresponding tensor product B-spline space:

Bh ≡Bh(Ξ1,··· ,Ξd;p1,··· ,pd) :=span{Bi}i∈I . (2.3)

Notice that the functions in Bh are piecewise polynomials of degree pα along each coor-
dinate α.

We associate the basis functions Bi with positive weights ωi and define a weighting
function ω : Ω̂ →R, with ω := ∑i∈I ωiBi. The NURBS basis functions on the parameter
patch are defined by projection:

Ri : Ω̂→R with Ri=
ωiBi

ω
(2.4)

and the corresponding NURBS space reads: Sh ≡ Sh(Ξ1,··· ,Ξd;p1,··· ,pd;ω) :=
span{Ri}i∈I .

In order to perform a parameterization of the physical domain, we introduce the con-
trol points Ci ∈R

d and define the geometric mapping F : Ω̂ → Ω with F := ∑i∈I CiRi. Let
us assume that F is invertible and possesses smooth inverse a.e. in each element Q∈Qh.
We define ∇F : Ω̂ → R

d and JF : Ω̂ → R to be the Jacobian matrix and determinant of
map F, respectively. By using F, we define a physical mesh in the physical domain Ω,
whose elements are obtained as the image of the elements in the parametric domain, i.e.,
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Kh := {K= F(Q) | Q∈Qh}. The corresponding mesh size in the physical domain is de-
fined as h :=maxK∈Kh

hK, where hK = ‖∇F‖L∞(Q)hQ. Associated with a family of meshes

{Qh}h>0 in parametric domain Ω̂, we introduce a family of meshes {Kh}h in physical
domain Ω.

Furthermore, we define the space spanned by NURBS basis functions in Ω as the
push-forward of the space Sh, which reads:

Vh ≡Vh(p1,··· ,pα) :=span{Ri◦F−1}i∈I =span{Ri}i∈I , (2.5)

where {Ri}i∈I is the NURBS basis in the physical domain with Ri :=Ri◦F−1 for all i∈ I.

2.1.2 IGA semi-discretization

In a d-dimensional problem, define trial space S :={v∈H1(Ω)d|v|ΓD
=g}, and test spaces

V :={v∈H1(Ω)d|v|ΓD
=0}. The variational form of (2.1) reads: find u(t)∈S , for ∀v∈V ,

such that

m(v,u(t))+c(v,u(t))+k(v,u(t))= l(v;t), (2.6)

bilinear forms m(·,·), c(·,·), k(·,·) and l(·;·) are defined as follows:





m(v,u)=
∫

Ω
ρv· ∂2u

∂t2
dΩ,

c(v,u)=
∫

Ω
2ρζv· ∂u

∂t
dΩ,

k(v,u)=
∫

Ω
ǫ(v) : σ(u)dΩ+

∫

Ω
ρζ2v·udΩ,

l(v;t)=
∫

Ω
v· f (t)dΩ+

∫

ΓN

v·h(t)dΩ.

(2.7)

We define finite-dimensional NURBS space Lh = span{Ri}d
i∈I . Let us consider a finite-

dimensional trial spaces Sh=Lh∩S⊂S , and a finite-dimensional test space V h=Lh∩V⊂
V . Then the finite-dimensional approximation of (2.6) reads: find uh(t)∈Sh, for ∀vh∈V h,
such that

m(vh,uh(t))+c(vh,uh(t))+k(vh,uh(t))= l(vh;t). (2.8)

For the sake of simplicity, we consider d = 2. Then, f (t) = ( f1(t), f2(t))T, g(t) =
(g1(t),g2(t))T , h(t) = (h1(t),h2(t))T , uh(t) = (uh

1(t),u
h
2(t))

T and vh = (vh
1,vh

2)
T. In the fi-

nite dimensional space, uh
1(t) and uh

2(t) can be represented by: uh
1(t) = ∑

Nd
i=1cu,1,i(t)Ri

and uh
2(t) = ∑

Nd

i=1cu,2,i(t)Ri, where cu,1(t) = {cu,1,i(t)}i=1···Nd
∈ R

Nd and cu,2(t) =
{cu,2,i(t)}i=1,···,Nd

∈R
Nd are the NURBS control variables of uh

1(t) and uh
2(t). Define the

vectorial control variable of uh: U(t) = (cu,1(t),cu,2(t))T , the control variables of ∂2uh

∂t2 (t)

and ∂uh

∂t (t), U
′′
(t) and U

′
(t) are defined in the same manner. Substitute them into (2.8),
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and let vh
1 and vh

2 take over all basis functions of V h
1 and V h

2 . We have the following linear
system:

MU
′′
(t)+CU

′
(t)+KU(t)=F(t), (2.9)

where matrices M,C,K∈R
2Nd×2Nd and F(t)∈R

2Nd are defined

M=

(
M11 0

0 M22

)
, C=

(
C11 0

0 C22

)
, K=

(
K11 K12

K21 K22

)
, F(t)=

(
F1(t)
F2(t)

)
,

(2.10)
in which matrices M11,M22,C11,C22,K11,K12,K21,K22 ∈ R

Nd×Nd and vectors F1(t),F2(t) ∈
R

Nd are obtained with entries from following integrals by means of suitable quadrature
rules:




{M11}i,j ={M22}i,j =
∫

Ω
ρRiRjdΩ,

{C11}i,j ={C22}i,j =
∫

Ω
2ρζRiRjdΩ,

{K11}i,j =
∫

Ω
(λ+2µ)

∂Ri

∂x

∂Rj

∂x
+

1

2
µ
(∂Ri

∂y

∂Rj

∂y
+

∂Ri

∂x

∂Rj

∂y

)
+ρζ2RiRjdΩ,

{K12}i,j =
∫

Ω
λ

∂Ri

∂x

∂Rj

∂y
+

1

2
µ
(∂Ri

∂y

∂Rj

∂x
+

∂Ri

∂x

∂Rj

∂x

)
dΩ,

{K21}i,j =
∫

Ω
λ

∂Ri

∂y

∂Rj

∂x
+

1

2
µ
(∂Ri

∂x

∂Rj

∂y
+

∂Ri

∂y

∂Rj

∂y

)
dΩ,

{K22}i,j =
∫

Ω
(λ+2µ)

∂Ri

∂y

∂Rj

∂y
+

1

2
µ
(∂Ri

∂x

∂Rj

∂x
+

∂Ri

∂y

∂Rj

∂x

)
+ρζ2RiRjdΩ,

{F1(t)}i,j =
∫

Ω
Ri f1(t)dΩ+

∫

ΓN

Rih1dΩ,

{F2(t)}i,j =
∫

Ω
Ri f2(t)dΩ+

∫

ΓN

Rih2dΩ,

(2.11)

notice that integrals in (2.11) need to be computed on the parametric domain.

2.2 Temporal discretization

2.2.1 Generalized-α method

Now we discretize (2.9) in time by means of the generalized-α method [16, 19]. Let us
denote acceleration U

′′
as a, velocity U

′
as v and displacement U as d. Relations between

a, v and d, fully discretized function, time discretization scheme and initial condition are:




dn+1=dn+∆tvn+∆t2
[(1

2
−β

)
an+βan+1

]
,

vn+1=vn+∆t
[
(1−γ)an+γan+1

]
,

Man+1−αm+Cvn+1−α f
+Kdn+1−α f

=F(tn+1−α f
),

(2.12)
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



dn+1−α f
=(1−α f )dn+1+α f dn,

vn+1−α f
=(1−α f )vn+1+α f vn,

an+1−αm =(1−αm)an+1+αman,

tn+1−α f
=(1−α f )tn+1+α f tn,

(2.13)

and 



d0=U0,

v0=U
′
0,

a0=M−1(F(0)−CU
′
0−KU0),

(2.14)

where αm, α f , β and γ are given parameters. It is second-order accurate when γ =
1
2−αm+α f and unconditionally stable when αm ≤ α f ≤ 1

2 and β ≥ 1
4 +

1
2(α f −αm). High-

frequency dissipation is maximized when β = 1
4(1−αm+α f ), and low-frequency dissi-

pation is minimized when α f =
1+αm

3 . Then, we introduce a parameter ρ∞ ∈ [0,1] [16]
to control the high frequency damping. For a linear problem, the greater the ρ∞, the
less high-frequency damping. To avoid unexpected instabilities while retaining a certain
amount of high-frequency information, we select ρ∞ =0.5 and set

αm =
2ρ∞−1

ρ∞+1
, α f =

ρ∞

ρ∞+1
, β=

1

(ρ∞+1)2
, γ=

3−ρ∞

2(ρ∞+1)
. (2.15)

2.2.2 Full discretization for snapshots

Substitute (2.13) into the last equation of (2.12) and we have

(1−αm)Man+1+(1−α f )Cvn+1+(1−α f )Kdn+1

=F
(
(1−α f )tn+1+α f tn

)
−αm Man−α f Cvn−α f Kdn. (2.16)

Considering the Dirichlet boundary condition, we replace the first two equations of (2.12)
with {

vn+1= a1dn+1+a2dn+a3vn+a4an,

an+1=b1dn+1+b2dn+b3vn+b4an,
(2.17)

where 



a1=
γ

β∆t
,

a2=− γ

β∆t
,

a3=1− γ

β
,

a4=∆t(1−γ)−∆tγ
1−2β

2β

and





b1=
1

β∆t2
,

b2=− 1

β∆t2
,

b3=
1

β∆t
,

b4=−1−2β

2β
.

(2.18)
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Then substitute (2.17) into (2.16), we have the following linear system for snapshots of
elastic wave problem:

MLdn+1=FR, (2.19)

where {
ML =(1−αm)b1M+(1−α f )a1C+(1−α f )K,

FR=F
(
(1−α f )tn+1+α f tn

)
−MR3

an−MR2
vn−MR1

dn,
(2.20)

with 



MR1
=
(
(1−αm)b2M+(1−α f )a2C+α f K

)
dn,

MR2
=
(
(1−αm)b3M+(1−α f )a3C+α f C

)
dn,

MR3
=
(
(1−αm)b4M+(1−α f )a4C+αm M

)
dn.

(2.21)

Solving (2.19) with dn, vn and an, we have displacement dn+1 at next time step. Then
vn+1 and an+1 can obtained.

2.3 Fully discretization for POD

2.3.1 Proper orthogonal decomposition

A numerical snapshot of (2.1) can be computed from (2.19). Generally, snapshots contain
less time slices (greater time step) or smaller time span than the final numerical solution.
Then we extract key information from the snapshots we got and build reduced basis
model from it. Supposing we have snapshots

{yj |yj=uh
j , j=1,··· ,N}. (2.22)

Denote VR := span{yj |yj = uh
j , j = 1,··· ,N} and R :=dimVR ≤ N <∞ (in some instances

R<N since in principle snapshots may be linearly dependent). For Nr ∈{1,··· ,R}, POD
requires to solve a finite-dimensional optimization problem

min
{ψk}Nr

k=1

1

N

N

∑
j=1

‖yj−
Nr

∑
k=1

(yj,ψk)ψk‖2

subject to (ψi,ψj)=δij for 1≤ i, j≤Nr (2.23)

to obtain an optimal orthonormal basis {ψi}Nr

i=1 of Vr with Vr ⊂VR. Then we introduce
the correlation matrix

D=[Dij]∈R
N×N with Dij =

1

N
(yj,yi), (2.24)

which is symmetric positive semi-definite and has rank R since dimVR = R. POD then
requires to solve the following eigenvalue problem

Dς=λς, (2.25)
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where D=DDTW with D denoting the snapshot matrix whose columns corresponding
to coefficients of the snapshots obtained by isogeometric analysis, and W denoting the
mass matrix of isogeometric analysis associated with the L2(Ω) inner product. Let λ1 ≥
···≥λR > 0 denote the nonzero eigenvalues of D, λR+1 = ···=λN = 0 the null ones, and
v1,··· ,vN ∈R

N be the associated eigenvectors. Then we have POD basis of rank Nr, 1≤
Nr ≤R:

ψk =
1√
Nλk

N

∑
n=1

vkuh
n, k=1,··· ,Nr.

We have the following error formula from [9]:

1

N

N

∑
n=1

‖uh
n−Pru

h
n‖2=

R

∑
k=Nr+1

λk‖ψk‖2.

Let Vr =span{ψi}Nr
i=1. The L2 projection Pr :Sh →Vr is defined as

Pruh
n :=

Nr

∑
k=1

(uh
n,ψk)ψk, ∀uh

n∈Sh.

2.3.2 IGA-POD fully-discretization

Suppose we already have snapshots {d1,d2,··· ,dN} using IGA. For easy treatment of
boundary condition, we replace every di with d̄i = di−d̃, i = 1,2,··· ,N, where d̃ =
(∑N

i=1di)/N is the average of snapshots. We set weight matrix:

W=

(
Wm 0

0 Wm

)
, (2.26)

where {Wm}i,j =
∫

Ω
RiRjdΩ ∈ R

Nd×Nd , and Θ = ∆t×diag(0.5,1,1,··· ,1,0.5) ∈ R
N×N.

For a m-dimensional problem, Ndo f = mNd. Now we have averaged snapshots D =

{d̄1,d̄2,··· ,d̄N}∈R
Ndo f×N, diagonal matrix Θ∈R

N×N and weight matrix W ∈R
Ndo f×Ndo f ,

following the procedure in Algorithm 1, we have POD modes {ψi}∈R
Ndo f ×N.

Given an error tolerance ǫtol > 0, the number of reduced basis Nr is determined by
choosing minimal Nr such that

∑
Nr
i=1λi

∑
N
i=1λi

>1−ǫtol . (2.27)

Then we have the order reduced basis: Pr =(ψ1,ψ2,··· ,ψNr)∈R
Ndo f×Nr with Nr ≪N. We

reduce the order of (2.19) using Pr and have the following linear system:

M̃Ld̃n+1= F̃R, (2.28)

where the reduced order matrix M̃L ∈R
Nr×Nr and the reduced order vector F̃R ∈R

Nr are




M̃L =PT
r MLPr

F̃R =PT
r F

(
(1−α f )tn+1+α f tn

)
−PT

r MR3
Prãn−PT

r MR2
Prṽn

−PT
r MR1

Pr(d̃n+d̄)−PT
r MLd̄.

(2.29)
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Algorithm 1 Compute PGD modes from snapshots

Require: D, W, Θ

1: case Ndo f <N:

2: D̄=W1/2DΘ1/2

3: R= D̄D̄T∈R
Ndo f×Ndo f

4: R= Ψ̄ΛΨ̄T

5: ψi =W−1/2Ψ̄(:,i)∈R
Ndo f

6: λi =Λii for i=1,··· ,N
7: case Ndo f =N:

8: D̄=W1/2DΘ1/2

9: D̄= Ψ̄ΣΦ̄T

10: ψi =W−1/2Ψ̄(:,i)∈R
Ndo f

11: λi =Σ2
ii for i=1,··· ,N

12: case Ndo f >N:

13: K=Θ1/2DTWDΘ1/2

14: K= Φ̄ΛΦ̄T

15: ψi =DΘ1/2Φ̄(:,i)/
√

λi ∈R
Ndo f

16: λi =Λii for i=1,··· ,N
17: return POD modes {ψi} and eigenvalues {λi}.

The recovering of ṽ and ã from d̃ are defined as follows:
{

ṽn+1= a1d̃n+1+a2d̃n+a3ṽn+a4ãn,

ãn+1=b1d̃n+1+b2d̃n+b3ṽn+b4ãn.
(2.30)

For the initial condition, we perform a least-square projection from R
Ndo f to R

Nr :




d̃0=(PT
r Pr)

−1(PT
r d0),

ṽ0=(PT
r Pr)

−1(PT
r v0),

ã0=(PT
r Pr)

−1(PT
r a0).

(2.31)

Then by solving (2.28), we obtain reduced order solutions Ũ
′′
= {ãi}, Ũ

′
= {ṽi}, Ũ =

{d̃i}∈R
Nr×Np . Finally POD solution can be recovered from reduced order solution: U

′′
r =

PrŨ
′′
, U

′
r = PrŨ

′
and Ur = PrŨ+(d̄,d̄,··· ,d̄). Notice that Np 6≡ N, and POD time size is

not necessarily the same as that for obtaining snapshot. When snapshots and POD have
different time steps, coefficients a1 to a4, b1 to b4 in (2.30) need to be re-computed.

3 Numerical errors

We have presented a detailed IGA-POD algorithm and work flow for the elastic wave
problem. Now, we are going to examine the accuracy of our method. In the following
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parts, numerical errors will be analyzed from two different aspects: numerical dispersion
and numerical convergence.

3.1 Numerical dispersion

In dispersion analysis, we are interested in the error between numerical wave length and
exact wave length. Numerical dispersion for elastodynamics with isogeometric Galerkin
method are considered in [12,13]. Both isotropic and anisotropic dispersion for 2D elastic
wave with IGA-Galerkin are shown in [20]. 2D and 3D isotropic numerical dispersion
for elastic wave with spectral element method are studied in [21]. From these studies
we find that IGA possesses better dispersion behavior than finite element method and
spectral element method. For the sake of brevity, numerical dispersion for snapshots will
not be included here, we refer [20, 21] for details. General idea of dispersion analysis
considers a specific solution of (2.1) in the form of harmonic waves function:

H =Ψeik·x−iωt, (3.1)

where Ψ is the amplitude of the wave, k=2πkh(cos(θ),sin(θ))T is the wave vector and ω
is the angular velocity. Then a discrete wave solution is combined with the discrete elas-
tic wave function into a discrete eigenvalue problem that yields compressional and shear
wave velocity. However, this technique is not compatible with POD. POD extracts infor-
mation from snapshots which are obtained from a time-dependent problem. Moreover,
eigenvalue problem neglects the temporal structure. Instead of considering errors on ve-
locity or wavelength, therefore we consider L2 error between Snapshot, POD solution
and exact solution with respect to different wave number and other parameters.

Consider the elastic wave function (2.1) in a square Ω=(0,1)2 with ζ=0, T=5×10−2,
∆t=10−3 and inhomogeneous Dirichlet boundary condition u=H, on ΓD. Substituting

(3.1) into (2.1) we have f =ρ ∂2 H
∂t2 −∇·σ(H). Then we set two different configurations for

this problem: First we consider the function that describes compressional wave. Denote
ek=

k
|k| the unit vector of k and nk the unit normal vector of k. We set Ψ=ek and ω=khcp.

Then for the shear wave we set Ψ=nk and ω= khcs.
Next let us compare the effect of regularity on the error. We consider four cases of

NURBS basis functions with the same polynomial degrees p=4 but different regularities:
k=0, k=1, k=2 and k=3. In order to ensure that the number of degrees of freedom for
different problems using each basis functions is consistent with each other, we introduce
different mesh subdivisions for different problems: 13×13 meshes for k=3, 7×7 meshes
for k=2, 5×5 mesh for k=1 and 4×4 mesh for k=0. Now number of degrees of freedom
Ndo f =2Nd=578=2×172. Now use these basis functions in turn to solve the elastic wave
problem above. Let the POD time step to be the same as that in obtaining snapshot,

ν=0.4, θ=0 or θ= π
4 , H= kh

17 , ǫtol =10−8, and consider the compressional wave case. We
denote the L2 error at time t=5×10−2 between a POD solution and the exact solution by
Ep, and the L2 error at time t=5×10−2 between a POD solution and a snapshot by Ep,r.
Ep and Ep,r with respect to H are shown in Figs. 2-3.
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Figure 2: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to k(p= 4), for compressional wave at θ = 0
and ν=0.4.

Figure 3: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to k(p= 4), for compressional wave at θ= π

4
and ν=0.4.

Then consider the shear wave case. Denote the L2 error at time t= 5×10−2 between
a POD solution and the exact solution by Es, and L2 error at time t=5×10−2 between a
POD solution and a snapshot by Es,r, Es and Es,r with respect to H are shown in Figs. 4-5.

Now let us compare the effect of polynomial degree on the error. Considering 4 new
types of NURBS basis functions that all have maximum regularity but different polyno-
mial degrees: (p=1, k=0), (p=2, k=1), (p=3, k=2) and (p=4, k=3). Set 13×13 meshes
for (p=4, k=3), 14×14 meshes for (p=3, k=2), 15×15 mesh for (p=2, k=1) and 16×16
mesh for (p=1, k=0) so that Ndo f =578. Ep, Ep,r, Es and Es,r all have the same definition
as that before. The results are shown in Figs. 6-9.
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Figure 4: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to k(p=4), for shear wave at θ=0 and ν=0.4.

Figure 5: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to k(p=4), for shear wave at θ= π

4 and ν=0.4.

Finally we consider the effect of the direction of wave vector on the error. We fix
H=0.25, then let θ take over 0 to 2π. For each θ, we amplify current Ep and Es to 1+25Ep

and 1+25Es, then the error figure of the value in polar coordinates for both compressional
wave and shear wave are given in Fig. 10.

By comparing figures of θ = 0 to figures of θ = π
4 , we find that for basis functions

of any regularity and polynomial degree, the numerical error is greatly related to the
angle of the wave vector. When θ = π

4 , both the accuracy of the numerical solution and
the range of maintaining high precision are far better than the case where θ = 0. This
phenomenon is particularly evident on basis functions with k> 0. After all, when k= 0,
the basis functions no longer meet the requirements of the trial space and test space. The
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Figure 6: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to p and k, for compressional wave at θ = 0
and ν=0.4.

Figure 7: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to p and k, for compressional wave at θ= π

4
and ν=0.4.

relationship between error and θ can be better reflected in Fig. 10. From this figure we can
find error at θ=0, π

2 ,π, 3π
2 are greater than that at θ= π

4 , 3π
4 , 5π

4 , 7π
4 . Therefore, in the actual

situation, when selecting the mesh size according to the wave number, the horizontal
or vertical wave is usually considered first. Next, we compare the effects of regularity
and polynomial degree on the error. From the figure, we can find that under the same
number of degree of freedom, basis functions with higher regularity and polynomial
degree control the numerical error better. Although when H is large enough (usually
H > 0.3), the error of the high-regularity basis function may even be greater than other
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Figure 8: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to p and k, for shear wave at θ=0 and ν=0.4.

Figure 9: L2 error between POD solution and exact solution (top left and top right), L2 error between snapshot
and POD solution (bottom left and bottom right), with respect to p and k, for shear wave at θ= π

4 and ν=0.4.

basis functions. But a grid that can make H so large is usually not used in practice so is
not considered here. Next, by comparing the errors of the basis functions that have high
polynomial degree but low regularity with other Cp−1 basis functions, we find that the
regularity has a huge influence on the error. No matter in numerical error or the range of
high precision, the performance of high regularity basis function is far better than that of
low regularity basis function. This means that in practical applications, it is necessary to
maintain high regularity as much as possible while meeting geometric modeling needs.
Finally, the properties of the errors between POD and snapshots are very similar to that
of the numerical error between POD and exact solution.
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Figure 10: Error figure for compressional wave (left column) and shear wave (right column) using different basis
functions with ν=0.4 and H=0.25.

3.2 Numerical convergence

We have discussed and analyzed the relationship between the error and the wave vector
in detail before. Now we consider numerical convergence of our method. We define
the mean numerical error over a time interval between POD solution and exact solution,
POD and snapshot as

E=

√√√√ 1

N

N

∑
n=1

‖un
ex−un

r ‖2
L2 (3.2)

and

Er =

√√√√ 1

N

N

∑
n=1

‖un
s −un

r ‖2
L2 , (3.3)

where un
r , un

ex and un
s are the POD solution, exact solution and snapshot at the n-th time

step. Then consider the elastic wave function (2.1) on Ω=(0,1.5)2 with exact solution:

u(x,y,t)=
1

1+(x2+y2)
1
2


 cos

(
2πlog(t+1)
(1+x+y)

−10(x2+y2)
)

sin
(

2πlog(t+1)
(1+x+y) −10(x2+y2)

)

. (3.4)

We set λ= 0.5769, µ= 0.3846, ρ= 1 and ζ = 0. Consider time interval [0,1] for snapshot,
[0,5] for POD and ∆t=10−3 for both snapshot and POD. We choose ǫtol =10−8, and solve
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Figure 11: Mean L2 error between POD (Nr = 16) and exact solution over time interval [0,5] with respect to
degree of freedom.

Figure 12: Snapshot, POD solution (Nr =16) and their relative difference in x-direction at t=1.

Figure 13: Snapshot, POD solution (Nr =16) and their relative difference in y-direction at t=1.

the equation several times with different basis functions. Mean L2 errors between POD
and exact solution over time interval [0,5] with respect to total degree of freedom Ndo f for
different basis function group are shown in Fig. 11. Displacements in X and Y directions
for snapshot, POD and difference between them at t=1 are given in Fig. 12 and Fig. 13.
Both figures have reached the expected accuracy and verified the theoretical convergence
order of IGA. Then we consider the effect of Nr on error between POD and snapshot.
Define truncation of λ as Λt=∑

N
i=Nr+1λi, and relative error to be E

‖uex(t=0.5)‖
L2

. Let Nr take
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Figure 14: First 50 eigenvalues and the relation between relative error and Λt over time interval [0,5].

over 1 to 50. Then the first 50 eigenvalues in (2.27) and relation between relative error
and Λt are shown in Fig. 14. It can be seen from the figure that a small number of POD
modes can control the error within a small range, thereby greatly reducing the scale of
the problem. Meanwhile, the square of the relative error is proportional to the truncation
error, which means that the error between POD and exact solution can be controlled by
ǫtol . This property is also mentioned in [36].

4 Numerical examples

In the previous section, we have discussed the error property of the IGA-POD method
for elastic wave function in detail. Now we consider the propagation of elastic wave in
3D linear elastic media and multipatch physical domain. All of the results are based on
GeoPDEs [15] on MATLAB.

4.1 Example 1

We consider evolutions of displacement and stress in a stainless steel spring with a rectan-
gular cross section. The initial control points and a refined mesh are presented in Fig. 15.
We choose the ρ = 7930kg/m3 , E = 1.25×1011Pa, ν = 0.25, ζ = 6.283×10−2, p = 2, k = 1,
number of quadrature points in each parametric direction of each element q = 3, mesh
number each parametric direction (h−1

1 ,h−1
2 ,h−1

3 ) = (240,4,4), Ndof = 21708, ǫtol = 10−8,
and ∆t = 5×10−5. POD solution is solved on time interval [0,1], and snapshots are
solved on time interval [0,0.03]. We assume a impulse displacement alongside y direction

gD =(0,gyD
,0)T, gyD

= A(1−2I(t−t0)2)e−I(t−t0)
2
, where A=10−2, I =106, t0 =7.5×10−3.

gD is applied on one square surface ΓD ={(x,y,z)T |z=0, x∈ [0.35,0.45], y∈ [−0.05,0.05]}.
Then natural Neumann condition is set on all other surfaces. Evolution of the magni-
tude of displacement and stress for POD-solution are shown respectively in Fig. 16 and
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(a) Initial Control points (b) Refined Mesh

Figure 15: Configurations of Example 1.

(a) t=0.0075s (b) t=0.015s (c) t=0.15s

Figure 16: Magnitude of displacement for POD solution with Nr =29 at different time for Example 1.

(a) t=0.0075s (b) t=0.015s (c) t=0.15s

Figure 17: Magnitude of stress for POD solution with Nr =29 at different time for Example 1.
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Figure 18: Magnitude of the relative difference in displacement (left) and stress (right) between snapshots and
POD solution at t=0.015 for Example 1.

Figure 19: Magnitude of displacement for POD solution with respect to time at different spatial points for
Example 1.

Fig. 17. Magnitude of the difference in displacement and stress between POD solution
and snapshot are exhibited in Fig. 18. Then we consider a high-fidelity model with the
same time step on time interval [0,1] and compare it with the POD method. CPU time for
both methods are illustrated in Table 1. We find that, POD reduces much computational
costs at the expense of a little accuracy. Finally we consider three points for the POD
solution: Point 1, Point 2 and Point 3, whose spatial coordinates at t= 0 are (0.4,0,0)T ,
(0.4,0.4,0)T and (0.4,0.8,0)T , respectively. The magnitude of displacement over time at
these three points are presented in Fig. 19.

4.2 Example 2

Now we consider the wave propagation problem with multi-patch geometry that de-
scribes a heterogeneous media. The initial control points, refined mesh and patch config-
uration are shown in Fig. 20. The computational domain Ω is composed by 4 different
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Table 1: CPU time (seconds) for Example 1.

Process High-fidelity model Reduced-order model

Assemble data structures and IGA matrices 91 91

High-fidelity solution (Snapshots) 24004 724

POD and POD matrices assembling / 8

Reduced-order solution / 3193

Total 24095 4016

(a) Initial Control points (b) Refined mesh and different patches

Figure 20: Configurations of Example 2.

materials, their physical parameters can be found in Table 2. We set homogeneous Dirich-
let boundary on ΓD ={(x,y)T |x=0 or x=10000 or y=-2400}, natural boundary condition
on ΓN =∂Ω/ΓD, initial displacement u0=0 and initial velocity v0:

v0=

{
(0,−10)T if (x,y)T ∈ΓN and x∈ [4975,5025],

(0,0)T otherwise.
(4.1)

Then let p= 3, k= 2, number of quadrature points in each parametric direction of each
element q= 3, number of mesh subdivision in each patch (ĥ−1

1 ,ĥ−1
2 ) = (320,40), Ndo f s =

164338, ǫtol = 10−8 and ∆t= 5×10−3. POD solution is solved on time interval [0,2], and
snapshots are solved on time interval [0,0.5]. Magnitude of displacement and stress for
POD solution at different time are shown in Fig. 21, from these figures we can clearly
see how the wave travel through the media, reflect and refract at boundaries between
different media. Notice that the boundaries between different media are marked with
white curves. The magnitude of the relative differences in displacement and stress at
t= 1 between snapshot of a high-fidelity model and POD solution are shown in Fig. 22,
as we can see for both displacement and stress, IGA-POD yields a good result. Then, we
consider a point (4002,221)T at top boundary. Horizontal and vertical displacements at
the point from POD solution over time interval [0,2] are illustrated in Fig. 23. Finally, the
CPU time is compared to a high-fidelity model which is solved on time interval [0,2]. The
results are shown in Table 3.
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(a) t=0.36s

(b) t=0.72s

(c) t=1.08s

(d) t=1.44s

Figure 21: Magnitude of displacement (left) and stress (right) for POD solution with Nr=187 at different times
for Example 2.

Figure 22: Magnitude of the relative difference in displacement (left) and stress (right) between snapshots and
POD solution at t=1 for Example 2.
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Figure 23: Horizontal and vertical displacement for POD solution with respect to time at (4002,221)T for
Example 2.

Table 2: Material configuration for Example 2.

Material ID Range ρ[kg/m3] ζ[s−1] E[pa] ν

1 On patch 1 and 2 1800 0.0680 6.12×109 0.025

2 On patch 3 1800 0.0444 1.44×1010 0.025

3 On patch 4 2050 0.0308 1.54×1010 0.053

4 On patch 5 and 6 2450 0.0125 3.80×1010 0.125

Table 3: CPU time (seconds) for Example 2.

Process High-fidelity Reduced-order

model model

Assemble data structures and IGA matrices 843 843

High-fidelity solution (Snapshots) 2515 630

POD decomposition and POD matrices assembling / 136

Reduced-order solution / 477

Total 3358 2085

5 Conclusions

We have presented the POD method combined with IGA and the generalized-α method
for elastodynamics. Numerical dispersion and numerical convergence are investigated
in detail through various numerical examples. In summary, the IGA-POD method can be
effectively applied to elastic wave problems with high accuracy and efficiency. It reduces
computational costs without losing too much accuracy, while exhibiting good properties
in numerical dispersion. The advantages of convenient geometric modeling for different
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domains including multi-patch circumstances and exact geometry representations have
been shown in numerical examples. Another interesting aspect is that the time interval
for snapshots and the time interval for POD are not necessarily the same. This means that
a snapshots computed in advance can usually be applied outside their original time in-
terval. However, time interval for snapshots cannot be too small. Otherwise the physical
information of the elastic wave will not be captured correctly, which results in spurious
solution with huge numerical error.
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