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Abstract. Elastic wave scattering has received ever-increasing attention in military
and medical fields due to its high-precision solution. In this paper, an edge-based
smoothed finite element method (ES-FEM) combined with the transparent bound-
ary condition (TBC) is proposed to solve the elastic wave scattering problem by a
rigid obstacle with smooth surface, which is embedded in an isotropic and homoge-
neous elastic medium in two dimensions. The elastic wave scattering problem satisfies
Helmholtz equations with coupled boundary conditions obtained by Helmholtz de-
composition. Firstly, the TBC of the elastic wave scattering is constructed by using the
analytical solution to Helmholtz equations, which can truncate the boundary value
problem (BVP) in an unbounded domain into the BVP in a bounded domain. Then
the formulations of ES-FEM with the TBC are derived for Helmholtz equations with
coupled boundary conditions. Finally, several numerical examples illustrate that the
proposed ES-FEM with the TBC (ES-FEM-TBC) can work effectively and obtain more
stable and accurate solution than the standard FEM with the TBC (FEM-TBC) for the
elastic wave scattering problem.

AMS subject classifications: 35Q99, 65N99

Key words: Elastic wave scattering problem, edge-based smoothed finite element method,
Helmholtz equations, transparent boundary condition.

1 Introduction

The obstacle scattering is a basis issue of scattering theory, which considers the incident
wave scattering by an impenetrable and bounded media. It plays an increasingly impor-
tant role in many scientific and engineering fields, such as target detection and position-
ing in radar and sonar; imaging of single proteins in medical imaging and oil and gas
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exploration in geophysical exploration [1]. Common scattering problem mainly include:
acoustic scattering, elastic wave scattering and electromagnetic wave scattering. Com-
pare to acoustic and electromagnetic wave scattering [2–4], the elastic wave scattering is
less studied because of the existence of compressional and shear waves, which will in-
crease computational difficulty. However, because the elastic wave scattering can obtain
more accurate solution, it has recently attracted more and more attention in geophysics
and seismology [5–10]. Meanwhile, the existence and uniqueness for solution to the elas-
tic scattering problem have been demonstrated in Refs. [11, 12]. The analytical solution
has been usually obtained for the wave scattering with simple geometrical obstacle [13],
while it is difficult to obtain the analytical solution for obstacles with relatively compli-
cated shapes.

Therefore, to tackle the wave scattering problem by more complicate obstacle, some
numerical methods have been proposed for solving direct and inverse obstacle scattering
[2,14], such as finite element method (FEM) [3,15–17], boundary integral method [18] and
dynamical functional particle method (DFPM) [19]. Among these numerical methods, the
FEM is a widely used and powerful numerical method. Considering that the elastic wave
scattering is described as an exterior boundary value problem imposed in an unbounded
domain, people usually truncate the unbounded domain into a bounded domain before
using the FEM solves the problem. There are two common truncation techniques: one is
the transparent boundary condition (TBC), the other is a technique called the perfectly
matched layer (PML). The TBC was firstly proposed based on a non-local Dirichlet-to-
Neumann (DtN) operator, which is defined by an infinite Fourier series. By imposing
the TBC on the boundary of the truncated domain, the artificial wave reflection can not
occur. The TBC has been applied to work out some wave scattering problems [2, 14, 20–
24]. The PML technique was proposed by Berenger [25], which uses an artificial layer
to truncate the computational region. The layer can guarantee that the scattered wave
is not reflected from the PML medium. The application of the PML can be founded in
researches [3, 26–28].

Though the FEM combined with the TBC or PML can handle the elastic wave scat-
tering problem, the accuracy of the solution is not particularly high due to over-stiff
characteristic of the FEM. To avoid over-stiff drawback and improve the accuracy of the
solution, Liu et al. established the G space theory and proposed the weakened weak
(W2) formulations [29–31] for some numerical methods, e.g. smoothed finite element
method (S-FEM) [32–36] and smoothed point interpolation method (S-PIM) [37–39]. The
S-FEM can soften over-stiff behavior of the FEM, hence the method has been extensively
employed in various problem, such as wave problem [40–46], contact problem [47, 48],
solid mechanics problem [12, 49–51] and fracture problem [53, 54]. In general, the S-FEM
model can be classified into different smoothed finite element models based on differ-
ent types of the smoothing domain. There are four common models, which are a cell-
based smoothed finite element method (CS-FEM), a node-based smoothed finite element
method (NS-FEM), an edge-based smoothed finite element method (ES-FEM) and a face-
based smoothed finite element method (FS-FEM). In these common models, the ES-FEM



Z. Wu et al. / Commun. Comput. Phys., x (20xx), pp. 1-40 3

is a more effective numerical model. The ES-FEM has been proved to have many ex-
cellent properties, e.g. spatial discrete stability, time response stability and possessing
near-accurate stiffness and so on. Especially, it has been also demonstrated that the ES-
FEM can control effectively the pollution error and enhance the accuracy of the solution
to the acoustic scattering problem [40, 42]. Because the result of the ES-FEM for acoustic
scattering is superior clearly to the standard FEM, we hope that the ES-FEM can still deal
with efficiently the elastic wave scattering.

In this paper, we consider the ES-FEM with the TBC to handle the elastic wave scat-
tering problem by the obstacle with smooth surface. The elastic wave scattering prob-
lem is described through the Naiver equations and Helmholtz equations with coupled
boundary conditions in Section 2. The FEM formulations with the TBC are provided for
Helmholtz equations with coupled boundary conditions in Section 3. The detailed for-
mulations of the ES-FEM-TBC are derived for Helmholtz equations with coupled bound-
ary conditions in Section 4. Several typical numerical examples are studied and discussed
in Section 5. Some relevant conclusions and directions for future research are concluded
in Section 6.

2 Problem statement

In this paper, we consider a time-harmonic plane elastic wave scattering problem in an
isotropic homogeneous elastic medium by rigid obstacle D with arbitrarily smooth sur-
face, whose boundary is ΓD. The infinite area outside the obstacle is represented by Ω, as
shown in Fig. 1.

Figure 1: Geometry of an obstacle with arbitrary shape resulting in scattering of a time-harmonic plane elastic
wave.

2.1 The Navier equation for the elastic wave scattering

Given an incident plane elastic wave uinc by obstacle, we have the Navier equation:

µ∆u
inc+(λ+µ)∇∇·uinc+ω2

u
inc=0 in Ω, (2.1)
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where ω > 0 is the angular frequency and λ, µ are the Lame constants, satisfying µ> 0,
λ+µ>0.

The incident field uinc=(uinc
1 ,uinc

2 ) can take the following forms:

{

uinc
p =deiκpx·d, for a compressional plane wave,

uinc
s =d

⊥eiκs x·d, for a shear plane wave,
(2.2)

where d=(cosθ,sinθ)T and d
⊥=(−sinθ,cosθ)T are orthogonal vectors; θ ∈ [0,2π] is an

incident angle; κp and κs represent the compressional and shear wavenumbers, respec-
tively, and can be given as follows:

κp=ω/
√

λ+2µ, κs =ω/
√

µ. (2.3)

Similarly, we also have the Navier equation for the total wave field u=(u1,u2):

µ∆u+(λ+µ)∇∇·u+ω2
u=0 in Ω. (2.4)

Since the obstacle is rigid elastically, the total field u satisfies the following boundary
condition:

u=0 on ΓD. (2.5)

The total field u can be written as

u=u
inc+υ, (2.6)

where υ is the scattered field, which is a vector with two components υ1 and υ2, i.e.
υ=(υ1,υ2).

Subtracting Eq. (2.1) from Eq. (2.4) yields

µ∆υ+(λ+µ)∇∇·υ+ω2υ=0 in Ω, (2.7)

and the Dirichlet boundary condition on ΓD,

υ=−u
inc on ΓD. (2.8)

In addition, the scattered wave υ is required to satisfy the Kupradze radiation conditions
on the far field:

{

x̂·∇∇·υ−iκp∇·υ= o( 1
|x| ), |x|→∞,

x̂·∇curl υ−iκscurl υ= o( 1
|x|), |x|→∞,

(2.9)

where x̂= x�|x|.
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2.2 Helmholtz equations with coupled boundary conditions

For the solution υ to Navier equation, the Helmholtz decomposition can be expressed by:

υ=∇φ+curlψ, (2.10)

where φ and ψ are scalar potential functions, which are called Lame potentials, and
curlψ=[ ∂yψ −∂xψ ]T.

Substituting Eq. (2.10) into Navier Eq. (2.7) yields

∇[(λ+2µ)(∆φ)+ω2φ]+curl [µ∆ψ+ω2ψ]=0, (2.11)

which is satisfied, if φ and ψ satisfy the Helmholtz equations

∆φ+κ2
pφ=0, ∆ψ+κ2

s ψ=0 in Ω, (2.12)

where κp and κs are wavenumbers defined in Eq. (2.3).
On the far field, the φ and ψ satisfy the Sommerfeld radiation conditions

lim
ρ→+∞

ρ1/2(∂ρφ−iκpφ)=0, lim
ρ→+∞

ρ1/2(∂ρψ−iκpψ)=0, ρ= |x|, ρ∈Ω. (2.13)

By the Helmholtz decomposition, the boundary condition defined in Eq. (2.8) can be
rewritten as

∂νφ+∂τψ=u, ∂νψ−∂τφ=υ on ΓD, (2.14)

where u=−ν·uinc, υ=τ ·uinc, in which ν=(ν1,ν2)T and τ =(τ1,τ2)T are the unit normal
and tangential vectors on vector of boundary ΓD, and τ1=−ν2, τ2=ν1.

3 Finite element formulation with TBC

3.1 TBC formulation

Since the standard FEM model can not solve directly the elastic wave scattering problem
in open region, the unbounded domain needs to be truncated into a bounded computa-
tional domain. In this paper, the TBC is imposed on the boundary of truncated domain,
which is called the transparent boundary ΓB, as shown in Fig. 2.

From Fig. 2, it can be seen that the original infinite region Ω is divided into two parts
by the transparent boundary ΓB: the bounded domain Ωi and the unbounded domain
Ωo, i.e. Ω=Ωi+Ωo. Hence, the boundary of the bounded domain is composed of ΓB and
ΓD.

Moreover, this problem is usually regarded as an external boundary value problem
in Ωo and solved analytically. However, in order to get the analytical solution easily and
quickly, the geometry of ΓB is usually as simple as possible. For example, a simple sphere
is applied to 3D problem, or a circle is applied to 2D problem.



6 Z. Wu et al. / Commun. Comput. Phys., x (20xx), pp. 1-40

Figure 2: Geometry of obstacle scattering problem domain with the transparent boundary ΓB.

Next, we will illustrate how to obtain the DtN operator on ΓB.

Firstly, we can know the following relationships on ΓB:

∂φ

∂n
=−M1φ,

∂ψ

∂n
=−M2ψ, on ΓB, (3.1)

where M1,M2 are the DtN operator and
∂φ
∂n ,

∂ψ
∂n are normal derivative of φ,ψ on ΓB, re-

spectively.

Observing Eq. (3.1), it can be found that if φ,ψ and their normal derivative are known,
the expression of the DtN operate can be obtained. The analytical solutions (φ,ψ) to the
exterior boundary value problem in Ωo can be expressed by:

φ(r,θ)=
1

π

∞

∑
n=0

′∫ 2π

0

H
(1)
n (κpr)

H
(1)
n (κpR)

cosn(θ−θ′)φ(R,θ′)dθ′, (3.2)

ψ(r,θ)=
1

π

∞

∑
n=0

′∫ 2π

0

H
(1)
n (κsr)

H
(1)
n (κsR)

cosn(θ−θ′)ψ(R,θ
′
)dθ′, (3.3)

where R is the radius of ΓB, φ(R,θ′) and ψ(R,θ′) are given Dirichlet data on ΓB. H
(1)
n is

the Hankel function of the first kind with n order, and the prime after the sum means that
the corresponding value is halved for the first term.

By differentiating Eqs. (3.2)-(3.3) with respect to r, respectively, we have

φν=
∂φ(r,θ)

∂n
|r=R=−

∞

∑
n=0

′∫ 2π

0
m1(θ−θ′)φ(R,θ′)dθ′, (3.4)

ψν=
∂ψ(r,θ)

∂n
|r=R=−

∞

∑
n=0

′∫ 2π

0
m2(θ−θ′)ψ(R,θ′)dθ′, (3.5)
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where coefficients m1(θ−θ′),m2(θ−θ′) are expressed by

m1(θ−θ′)=−κp

π

H
(1)′
n (κpR)

H
(1)
n (κpR)

(cosnθcosnθ′+sinnθsinnθ′), (3.6)

m2(θ−θ′)=−κs

π

H
(1)′
n (κsR)

H
(1)
n (κsR)

(cosnθcosnθ′+sinnθsinnθ′). (3.7)

Finally, the DtN operator can be obtained by substituting Eqs. (3.2)-(3.3) and Eqs. (3.4)-
(3.5) into Eq. (3.1).

3.2 FEM formulation for Helmholtz equations with coupled boundary
conditions

In the subsection, the standard Galerkin weak forms of Helmholtz equations with cou-
pled boundary conditions with the TBC are derived in detail based on the DtN operator.
Through the Scalar Green’s theorem of the second kind, we have:











∫

Ωi

∇ξ∇φdΩ−κ2
p

∫

Ωi

ξφdΩ+
∫

ΓB

ξM1φdΓ+
∫

ΓD

ξ∂τψdΓ=
∫

ΓD

ξudΓ,
∫

Ωi

∇η∇ψdΩ−κ2
s

∫

Ωi

ηψdΩ+
∫

ΓB

ηM2ψdΓ−
∫

ΓD

η∂τφdΓ=
∫

ΓD

ηυdΓ,
(3.8)

where ξ and η are test functions, corresponding to potential functions φ and ψ, respec-
tively.

Assuming that the solution to the elastic wave scattering problem can be approxi-
mated in terms of the following form:

φ=ΣNiφi=Nφ, ψ=ΣNiψi =Nψ, (3.9)

where φi and ψi are the value of φ and ψ at node i, respectively, and Ni is the FEM shape
function at node i.

By substituting Eq. (3.9) into Eq. (3.8), the discrete formulation of Eq. (3.8) can be
written as

[K−P+KAB+Kb]Φ=F, (3.10)

where Φ is an unknown nodal vector, i.e. Φ=[ φ ψ ]T, in which φ and ψ consist of φe

and ψe, respectively.
The system stiffness matrix K consists of element stiffness matrix Ke, and

Ke=

[

Ke
1 0

0 Ke
2

]

, (3.11)

with Ke
1=Ke

2=
∫

Ωe
BeTBedΩ, where Ωe is the element mesh in the computational domain.
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The mass matrix P consists of element mass matrix Pe, and

Pe =

[

κ2
pPe

1 0

0 κ2
s Pe

2

]

, (3.12)

with Pe
1=Pe

2=
∫

Ωe
NTNdΩ. And the obstacle boundary stiffness matrix Kb can be calcu-

lated using

Kb=

[

0 be
1

−be
1 0

]

, (3.13)

and the KAB denotes the matrix which is associated with the DtN map and can be given
by

KAB=

[

K1
AB 0
0 K2

AB

]

, (3.14)

where the element of the matrix K1
AB, K2

AB on row i, column j can be given by K1
I J , K2

I J ,

respectively. The K1
I J and K2

I J can be expressed as:

K1
I J =

∫

ΓB

NIM1NJdΓ

=−
∞

∑
j=0

κp

π

H
(1)′
n (κpR)

H
(1)
n (κpR)

(

∫

ΓB

NI(x)Fj(x)dΓ

)

×
(

∫

ΓB

NJ(x)Fj(x
′)dΓ

)

, (3.15)

K2
I J =

∫

ΓB

NIM2NJdΓ

=−
∞

∑
j=0

κs

π

H
(1)′
n (κsR)

H
(1)
n (κsR)

(

∫

ΓB

NI(x)Fj(x)dΓ

)

×
(

∫

ΓB

NJ(x)Fj(x
′)dΓ

)

, (3.16)

in which NI and NJ denote the corresponding shape functions associated with node i
and j, the functions Fj(x) and Fj(x

′) are given by

Fj(x)= [ cosnθ sinnθ ], Fj(x
′)= [ cosnθ′ sinnθ′ ], (3.17)

and the obstacle boundary element force vector can be calculated using

Fe =[ Fe
1 Fe

2 ]
T, (3.18)

with Fe
1=
∫

Γe
D

NTudΓ, Fe
2=
∫

Γe
D

NTυdΓ.

4 Formulation of S-FEM with TBC

The S-FEM is a numerical method using the weakened weak formulation, which uses a
kind of smoothing operation to approximate the derivative of function wl(x) with respect
to xi. The formulation can been given:

∂wl

∂xi
(x)=

1

As

∫

Γs

wl(s)nids, i=1,··· ,d, ∀ x∈Ωs, (4.1)
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where wl(x) is the lth component of function w(x), x=(x1,x2,··· ,xd), in which d is the
dimension of smoothing domain Ωs. As is the area of Ωs and Γs is the boundary of
Ωs. Hence, the gradient or derivative of any function is approximated by the Gauss
quadrature along the boundary of the smoothing domain as Eq. (4.1). The 2D problem
usually adopt a Gauss-point.

4.1 Edge-based smoothing domains

The construction of edge-based smoothing domains (E-SDs) is introduced in this section.
For a triangular element, the construction of the E-SDs is accomplished by connecting the
two endpoints of the edge with the centroid of the adjacent two elements. In this paper,
the number of smoothing domain is the same as the number of edge in the mesh. Fig. 3
shows the ES-FEM model using triangular elements with the solid line, the smoothing
domain Ωs

ki
for interior edge ki, or Ωs

kb
for boundary edge kb, which is the shade domain

with dash line, and Γs
ki

, Γs
kb

corresponding to the boundary of Ωs
ki

, Ωs
kb

, respectively.

Figure 3: The background mesh using triangular elements with the solid line, and the smoothing domain Ωs
ki

for interior edge ki, or Ωs
kb

for boundary edge kb, which is the shade domain with dash line, and Γs
ki
, Γs

kb

corresponding to the boundary of Ωs
ki
, Ωs

kb
, respectively.

4.2 Weakened weak form for Helmholtz equations with coupled boundary
conditions

The weakened weak form for Helmholtz equations with coupled boundary conditions
is derived in this part. Based on the smoothing operator, the weakened weak forms of
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Eq. (3.8) on the smoothing domains are expressed by:






















Ns

∑
i=1

∫

Ωs

∇φ·∇ξdΩ−κ2
p

∫

Ωi

φξdΩ+
∫

ΓB

ξM1φdΓ+
∫

ΓD

ξ∂τψdΓ=
∫

ΓD

ξudΓ,

Ns

∑
i=1

∫

Ωs

∇ψ ·∇ηdΩ−κ2
s

∫

Ωi

ηψdΩ+
∫

ΓB

ηM2ψdΓ−
∫

ΓD

η∂τφdΓ=
∫

ΓD

ηυdΓ,

(4.2)

where Ns is the number of the E-SDs, and the smoothed gradients are discretized through
the following forms:

∇φ=
1

As

∫

Ωs

∇φdΩ=
1

As

∫

Γs

N(x)n(x)dΓφ=Bφ,

∇ψ=
1

As

∫

Ωs

∇ψdΩ=
1

As

∫

Γs

N(x)n(x)dΓψ=Bψ,

(4.3)

and

B=[B1 B2 ··· BN ]; BI =[BIx BIy]
T ,

φ=[φ1 φ2 ··· φN]
T ; ψ=[ψ1 ψ2 ··· ψN ]

T.
(4.4)

Substituting Eq. (4.3) into Eq. (4.2), we obtain:

[K−P+KAB+Kb]Φ=F, (4.5)

where Φ is an unknown nodal vector, i.e. Φ=[ φ ψ ]T.
The system stiffness matrix K is expressed by:

K=

[

K1 0

0 K2

]

, (4.6)

with K1=K2=∑
Ns
i=1

∫

Ωs
B

T
BdΩ.

5 Numerical experiments

In this section, several numerical examples are presented to test the accuracy and effi-
ciency of the ES-FEM-T3-TBC for the elastic wave scattering problem. These numerical
experiments can be implemented by MATLAB in this paper. In order to estimate the error
of the numerical approximation, the relative error is defined by

Eη =

√

√

√

√

√

√

√

√

N

∑
i=1

(υe
i −υn

i )
T(υe

i −υn
i )

N

∑
i=1

(υe
i )

T(υe
i )

, (5.1)
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where υe
i and υn

i are analytical/reference solution and numerical solution; υe
i and υn

i are
their complex conjugates, respectively; N is the number of nodes considered.

It is known that the numerical error will become lager with the value of wavenum-
bers increasing, even though the sufficiently fine mesh is applied to Helmholtz equations.
Fortunately, the problem has been solved in the past researches and it has been demon-
strated that the relative error of the numerical solution to Helmholtz equations can be
controlled using the next equations [16]:

E
p
η ≤C1κph+C2κ3

ph2; E
s
η ≤C1κsh+C2κ3

s h2, (5.2)

where C1 and C2 are the related constants, which are independent of the characteristic
length h and the wavenumbers κp or κs. According to Eq. (2.3), we can know that κp and
κs are related to λ and µ. Let the lame constants λ=2 and µ=1 in this paper. Meanwhile,
we adopt a single compressional plane wave with the incident angle φ=0 to illuminate
the obstacle in this paper.

In this work, the characteristic length of triangular (T3) and quadrilateral (Q4) ele-
ment are evaluated by

hT3=
√

2AΩ/Ne, hQ4=
√

AΩ/Ne, (5.3)

where Ne is the number of triangular or quadrilateral elements, AΩ is the area of problem
domain.

In addition, to apply the TBC in next numerical experiments, the infinite Fourier series
in Eqs. (3.15) and (3.16) needs to be truncated, and can be re-given:

K1
I J =

∫

ΓB

NIM1NJdΓ

=−
Nopt

∑
j=0

κp

π

H
(1)′
n (κpR)

H
(1)
n (κpR)

(

∫

ΓB

NI(x)Fj(x)dΓ

)

×
(

∫

ΓB

NJ(x)Fj(x
′)dΓ

)

, (5.4)

K2
I J =

∫

ΓB

NIM2NJdΓ

=−
Nopt

∑
j=0

κs

π

H
(1)′
n (κsR)

H
(1)
n (κsR)

(

∫

ΓB

NI(x)Fj(x)dΓ

)

×
(

∫

ΓB

NJ(x)Fj(x
′)dΓ

)

, (5.5)

where Nopt is an appropriate truncated number.
Furthermore, the radius R of the boundary ΓB is also a crucial parameter for the ac-

curacy of the elastic wave scattering problem. If the value of R is large, it is useful to
enhance the accuracy of the numerical solution. But when the value is too large, it can
produce more expensive calculation costs. Therefore, choosing appropriate Nopt and R
makes sense for the numerical example. According to the Refs. [54,55] and a lot of exper-
imental results, unless otherwise specified, we directly use Nopt =40 and R=7m in next
numerical examples.
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5.1 The elastic wave scattering by infinite cylinder with circular section

The elastic wave scattering by an infinite cylinder with circular section in this section
is first studied in this section, as shown in Fig. 4. The parameter equations of circular
section are:

x(t)= rcost, y(t)= rsint, (5.6)

where the boundary Γ(t)=(x(t),y(t)), t∈ [0,2π].
Since the variables are unchanged along the z−axis and the dimension is much larger

than that of other axes, this problem can be regarded as a typical two-dimensional prob-
lem even though the three-dimensional space is involved. Let the radius of the cylinder
be r=2m. The analytical solution to the elastic wave scattering by a circle-shaped obstacle
has been given by Ref. [28]:

φ(r,θ)= ∑
n∈Z

H
(1)
n (κpr)

H
(1)
n (κpR)

φ(n)(R)einθ ; ψ(r,θ)= ∑
n∈Z

H
(1)
n (κsr)

H
(1)
n (κsR)

ψ(n)(R)einθ, (5.7)

where

φ(n)=
R2H

(1)
n (κpR)H

(1)
n (κsR)

R2κpκsH
(1)′
n (κpR)H

(1)′
n (κsR)−n2H

(1)
n (κpR)H

(1)
n (κsR)

(

κs H
(1)′
n (κsR)

H
(1)
n (κsR)

f (n)− in

R
g(n)

)

,

(5.8)

ψ(n)=
R2H

(1)
n (κpR)H

(1)
n (κsR)

R2κpκs H
(1)′
n (κpR)H

(1)′
n (κsR)−n2H

(1)
n (κpR)H

(1)
n (κsR)

(

in

R
f (n)+

κpH
(1)′
n (κpR)

H
(1)
n (κpR)

g(n)

)

,

(5.9)

in which H
(1)
n is the Hankel function of the first kind with order n; f (n) and g(n) are

Figure 4: The plane elastic wave scattering by an infinite cylinder with circular section.
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the Fourier coefficients of f and g, respectively. In particular, the detailed derivation
processes are given in the appendix.

It is from Eq. (2.10) that the solution to Navier equation can be calculated by:

υ=[ υ1 υ2 ]
T =[ ∂xφ+∂yψ ∂yφ−∂xψ ]T . (5.10)

5.1.1 Effect of angular frequency for the elastic wave scattering

In this subsection, the accuracy of the ES-FEM-T3-TBC, FEM-T3-TBC and FEM-Q4-TBC
is compared at different angular frequencies for the elastic wave scattering problem. The
computational domain with the TBC is discretized using the triangular elements with
1539 nodes, 2914 elements and quadrilateral elements with 1540 nodes, 1461 elements, as
shown in Fig. 5.
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Figure 5: The used meshes for the involved computational domain: (a) triangular elements; (b) quadrilateral
elements.

To take fully account of the effect of angular frequency on accuracy, several different
angular frequencies are adopted, such as ω = 0.5, 1, 2, 3, 4, 5, 6 rad/s, correspondingly
compressional wavenumbers κp = 0.25, 0.5, 1, 1.5, 2, 2.5, 3 m−1 and shear wavenumbers
κs = 0.5, 1, 2, 3, 4, 5, 6 m−1. Based on different angular frequencies, the relative errors
of (φ,ψ) for Helmholtz equations and (v1,v2) for Navier equation are listed in Tables 1, 2
and Fig. 6(a) and (b), respectively. Meanwhile, the relative errors of the total field (u1,u2)
are also listed in Table 3 at the circle r=4m.

Observing the above-mentioned results, we can easily find that the relative errors of
the ES-FEM-T3-TBC are not only significantly lower than that of the FEM-T3-TBC, but
also lower than that of the FEM-Q4-TBC. Meanwhile, it is also seen that the performance
of three methods will all deteriorate gradually with the angular frequency increasing.
However, compared to the two standard FEMs, the results of the ES-FEM-T3-TBC is more
accurate and stable.

Moreover, the polar angle is compared about (φ,ψ) and (v1,v2) at ω=0.5 and 4 rad/s
at the circle r=4m, which are shown in Figs. 7, 8 and Figs. 9, 10.

From Figs. 7, 8 and Figs. 9, 10, some conclusions are found:
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Table 1: The relative errors of (φ,ψ) at different angular frequencies using different methods for the elastic
wave scattering by a circle-shaped obstacle.

At the circle r=4

Method ω=0.5 ω=1 ω=2 ω=3 ω=4 ω=5 ω=6

FEM-T3-TBC 0.0392 0.0401 0.0455 0.0788 0.1570 0.3283 0.4064

FEM-Q4-TBC 0.0239 0.0214 0.0342 0.0652 0.1190 0.2852 0.3431

ES-FEM-T3-TBC 0.0205 0.0199 0.0295 0.0413 0.0739 0.1089 0.2691

At the circle r=6

FEM-T3-TBC 0.0346 0.0360 0.0798 0.1845 0.3944 0.6871 0.9605

FEM-Q4-TBC 0.0258 0.0246 0.0599 0.1521 0.3414 0.6109 0.8059

ES-FEM-T3-TBC 0.0223 0.0207 0.0361 0.0509 0.1289 0.1415 0.2427

At the total computational domain

FEM-T3-TBC 0.0578 0.1282 0.0613 0.1222 0.2313 0.3964 0.5725

FEM-Q4-TBC 0.0298 0.0256 0.0474 0.1059 0.1917 0.3466 0.4776

ES-FEM-T3-TBC 0.0233 0.0227 0.0338 0.0470 0.0938 0.1119 0.2536

Table 2: The relative errors of (v1,v2) at different angular frequencies using different methods for the elastic
wave scattering by a circle-shaped obstacle.

At the circle r=4

Method ω=0.5 ω=1 ω=2 ω=3 ω=4 ω=5 ω=6

FEM-T3-TBC 0.0336 0.0453 0.0803 0.1486 0.2648 0.3831 0.6021

FEM-Q4-TBC 0.0235 0.0282 0.0629 0.1243 0.2266 0.3294 0.4463

ES-FEM-T3-TBC 0.0200 0.0248 0.0428 0.0684 0.0994 0.1930 0.3131

At the circle r=6

FEM-T3-TBC 0.0335 0.0486 0.1427 0.3004 0.5186 0.7914 1.0562

FEM-Q4-TBC 0.0197 0.0305 0.1231 0.2584 0.4580 0.7352 1.0080

ES-FEM-T3-TBC 0.0212 0.0291 0.0615 0.0985 0.1741 0.2924 0.3254

At the total computational domain

FEM-T3-TBC 0.0536 0.0880 0.1222 0.2227 0.3751 0.5447 0.6676

FEM-Q4-TBC 0.0630 0.0522 0.1053 0.1947 0.3293 0.4964 0.6002

ES-FEM-T3-TBC 0.0338 0.0396 0.0707 0.1095 0.1575 0.2292 0.3052

Table 3: The relative errors of (u1,u2) at different angular frequencies using different methods for the elastic
wave scattering by a circle-shaped obstacle.

At the circle r=4

Method ω=0.5 ω=1 ω=2 ω=3 ω=4 ω=5 ω=6

FEM-T3-TBC 0.0278 0.0249 0.0496 0.1266 0.1791 0.2400 0.3827

FEM-Q4-TBC 0.0194 0.0155 0.0389 0.1059 0.1532 0.2064 0.2837

ES-FEM-T3-TBC 0.0165 0.0136 0.0265 0.0583 0.0672 0.1209 0.1990
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Figure 6: (a) The relative errors of (φ,ψ) at different angular frequencies using different methods at the circle
r= 4m; (b) the relative errors of (v1,v2) at different angular frequencies using different methods at the circle
r=4m.
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Figure 7: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=0.5 rad/s
for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of φ; (b) the imaginary part of φ;
(c) the real part of ψ; (d) the imaginary part of ψ.

1. At ω = 0.5 rad/s, these numerical results from three different methods have very
similar accuracy with the analytical solution.

2. The solution φ is better than ψ at ω=4 rad/s, which confirms the conclusion given
in Eq. (5.2) that the relative errors are controlled mainly by shear wavenumber κs

for the elastic wave scattering.
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Figure 8: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω = 4 rad/s
for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of φ; (b) the imaginary part of φ;
(c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 9: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=0.5 rad/s
for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of v1; (b) the imaginary part of v1;
(c) the real part of v2; (d) the imaginary part of v2.
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Figure 10: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=4 rad/s
for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of v1; (b) the imaginary part of v1;
(c) the real part of v2; (d) the imaginary part of v2.

3. From the above-mentioned results, we can find that based on the same size of
meshes, with the increasing of angular frequency, the relative errors of the two
standard FEMs increase faster than that of the ES-FEM-T3-TBC. Especially, when ω
is greater than 4, the relative errors of the two standard FEMs have become larger.
However, the relative errors of the ES-FEM-T3-TBC are still lower. Therefore, com-
pared to the two standard FEMs, the angular frequency of the ES-FEM-T3-TBC can
have a larger range, which implies the ES-FEM-T3-TBC is not sensitive relatively to
the angular frequency.

5.1.2 Effect of different domain truncation methods

The effects of two different domain truncation methods (PML and TBC) on the accuracy
for the elastic wave scattering are considered in this subsection. In the example, the
accuracy of results of the ES-FEM-T3-TBC and ES-FEM-T3-PML are compared based on
the similar number of nodes in the background mesh. The parameters of the PML are the
same as in Ref. [28]. Fig. 11 shows that the discretized meshes of the bounded domain
with the TBC (1370 nodes and 2573 triangular elements) and the PML (1372 nodes and
2574 triangular elements).

The angular frequencies, compressional and shear wavenumbers are set as Subsec-
tion 5.1.1. The relative errors of (φ,ψ) are listed in Table 4 at the circle r= 4m using the
FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-TBC.



18 Z. Wu et al. / Commun. Comput. Phys., x (20xx), pp. 1-40

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

(a)

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

(b)

Figure 11: The discretized meshes using triangular elements in computation domain: (a) a bounded domain
with the TBC; (b) a bounded domain with the PML.

Table 4: The relative errors of (φ,ψ) using different domain truncation methods for the elastic wave scattering
by a circle-shaped obstacle.

Method ω=0.5 ω=1 ω=2 ω=3 ω=4 ω=5 ω=6

FEM-T3-PML 0.0598 0.0360 0.0664 0.1241 0.2413 0.3790 0.6380

FEM-T3-TBC 0.0450 0.0283 0.0509 0.1021 0.1943 0.3692 0.5162

ES-FEM-T3-PML 0.0202 0.0254 0.0367 0.0736 0.1127 0.2050 0.3451

ES-FEM-T3-TBC 0.0203 0.0198 0.0314 0.0491 0.0844 0.1134 0.3021

From Table 4, it is found that the results of ES-FEM-T3 are superior to that of the FEM-
T3 for the elastic wave scattering problem regardless of truncation method. However,
with the angular frequency increasing, the difference of relative error of the ES-FEM-T3
belonging to different domain truncation method will become large.

Fig. 12 and Fig. 13 show that (φ,ψ) compares the polar angle at ω=0.5 and 4 rad/s at
the circle r=4m, respectively.

It is seen from these figures that the relative errors of (φ,ψ) are very alike at ω= 0.5
rad/s, but for ω=4 rad/s, we can find the results based on the TBC are better obviously
than that of the PML. Therefore, if considering the accuracy of solution to the elastic wave
scattering problem based on the similar number of nodes, the ES-FEM-T3-TBC is more
accurate and an alternative to the ES-FEM-T3-PML, which can solve efficiently the elastic
wave scattering problem [28].

5.1.3 Effect of mesh distortion for Helmholtz equations

In generally, mesh quality has a great effect on the accuracy of the numerical results.
Hence, the effect of mesh distortion on the accuracy using different methods (FEM-T3-
TBC and ES-FEM-T3-TBC) is compared in the subsection. Eq. (5.12) is used to obtain the
irregular mesh from the regular mesh:

x′= x+∆x·rc ·β, y′=y+∆y·rc ·β, (5.11)
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Figure 12: The results obtained using the FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-
TBC at ω=0.5 rad/s for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of φ; (b) the
imaginary part of φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 13: The results obtained using the FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-
TBC at ω=4 rad/s for the elastic wave scattering by a circle-shaped obstacle: (a) the real part of φ; (b) the
imaginary part of φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 14: (a) The used regular mesh; (b) the corresponding irregular mesh at β= 0.5 for the elastic wave
scattering by a circle-shaped obstacle.

Table 5: The relative errors of (φ,ψ) using different methods at different irregular factors for the elastic wave
scattering problem by a circle-shaped obstacle.

Method β=0.0 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5

FEM-T3-TBC 0.0450 0.0462 0.0505 0.0609 0.0868 0.2105

ES-FEM-T3-TBC 0.0203 0.0204 0.0205 0.0209 0.0223 0.0237

where x and y represent the coordinate values of the nodes on the original regular mesh;
x′ and y′ are the coordinate values of the nodes on the irregular mesh corresponding to x
and y; ∆x and ∆y show the characteristic length in the x and y directions, respectively. rc

is a random number in the interval [−1,1]. β is a parameter about the irregularity factor,
which can distort the mesh. The value of β ranges from 0 to 1. Fig. 14 gives the used
regular mesh and the corresponding irregular mesh for β=0.5 at the angular frequency
ω=0.5 rad/s.

Given the angular frequency ω = 0.5 rad/s, the different irregularity factors β= 0.0,
0.1, 0.2, 0.3, 0.4, 0.5 are considered here. The relative errors of (φ,ψ) at the circle r= 4m
using different methods at different irregularity factors are listed in Table 5. In order to
clearly identify the numerical results of different methods, the real and imaginary part of
the solutions φ and ψ to Helmholtz equations are presented in Fig. 15.

From the above results, we can find that both the results of the FEM-T3-TBC and
ES-FEM-T3-TBC will deteriorate with the irregular factor increasing, but the speed of
deterioration of the FEM-T3-TBC is clearly faster than that of the ES-FEM-T3-TBC. The
ES-FEM-T3-TBC using irregular mesh still keep the same order with the ES-FEM-T3-TBC
using regular mesh, but the results of the FEM-T3-TBC using irregular mesh is poorer
than that of the regular mesh. Moreover, we can also find that the relative error of the
FEM-T3-TBC is almost 9 times that of the ES-FEM-T3-TBC at β=0.5. These crucial find-
ings fully demonstrate that the ES-FEM-T3-TBC is less sensitive to mesh distortion than
the FEM-T3-TBC.
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Figure 15: The (φ,ψ) for the elastic wave scattering problem by a circle-shaped obstacle: (a) the real part of
φ; (b) the imaginary part of φ; (c) the real part of ψ; (d) the imaginary part of ψ.

5.1.4 Convergence study for Helmholtz equations

In this subsection, the convergence properties of the ES-FEM-T3-TBC for the elastic wave
scattering problem are studied and discussed. In order to present the convergence prop-
erties, several uniform meshes are used in the part. Given the angular frequency ω= 6
rad/s, the results of three numerical methods (FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-
T3-TBC) are plotted on Fig. 16. It is seen from Fig. 16(a) that as the number of nodes
increases, the relative errors will almost tend to three certain values for above three nu-
merical methods. The value of the ES-FEM-T3-TBC is the smallest value of three stable
values.

Furthermore, in order to study more clearly the convergence properties of the ES-
FEM-T3-TBC, the convergence rate for three numerical methods at ω = 6 rad/s are also
calculated, as showed in Fig. 16(b). It is from the figure that the convergence behavior of
the ES-FEM-T3-TBC (r=1.828) is better than the FEM-Q4-TBC (r=1.4982) and FEM-T3-
TBC (r= 1.4236). These findings indicate that compared to the two standard FEMs, the
convergence speed of the ES-FEM-T3-TBC is faster.



22 Z. Wu et al. / Commun. Comput. Phys., x (20xx), pp. 1-40

2 3 4 5 6 7 8

 1/h

0.05

0.1

0.15

0.2

0.25

0.3

 E
η

FEM-T3-TBC (ω = 6)

FEM-Q4-TBC (ω = 6)

ESFEM-T3-TBC (ω = 6)

(a)

-0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45

 log10(h)

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

 lo
g1

0(
E
η
)

FEM-T3-TBC (r = 1.4236)
FEM-Q4-TBC (r = 1.4982)
ESFEM-T3-TBC (r = 1.828)

(b)

Figure 16: The convergence for solution from different methods for Helmholtz equations of the elastic wave
scattering by circle shaped domain: (a) convergence of relative errors of the results; (b) convergence ratios of
relative errors of the results.

5.1.5 Computational efficiency for Helmholtz equations

In this subsection, the computational efficiency of different numerical methods (FEM-T3-
TBC, FEM-Q4-TBC and ES-FEM-T3-TBC) will be discussed and analyzed. In order to
fully show computational efficiency, four mesh patterns are adopted for the elastic wave
scattering by a circle-shaped obstacle. The details about the meshes are given in Table 6,
including the number of nodes, the number of elements and the degrees of freedom for
the different meshes used in the numerical experiment.

Fig. 17 shows that the computational efficiency of the FEM-T3-TBC, FEM-Q4-TBC
and ES-FEM-T3-TBC at the angular frequency ω = 3 rad/s. To ensure correction of the
result, we use the same direct solver to track the elastic wave scattering problem. From
Fig. 17(a), it is found that the computation time of the ES-FEM-T3-TBC is higher than
the two standard FEMs. But if taking the numerical error indicator into account, we can
observe that the ES-FEM-T3-TBC possesses obvious advantage, as shown in Fig. 17(b).
Fig. 17(b) shows that the accuracy obtained using the ES-FEM-T3-TBC with the mesh3
is the same as that using the two standard FEMs with the mesh4, but the former is

Table 6: Four meshes used in the example with a circle-shaped obstacle.

mesh1 mesh2 mesh3 mesh4

Nodes 409(T3) 760(T3) 2897(T3) 11347(T3)

409(Q4) 761(Q4) 2901(Q4) 11353(Q4)

Elements 714(T3) 1376(T3) 5504(T3) 22114(T3)

360(Q4) 691(Q4) 2759(Q4) 11070(Q4)

Degrees of 818(T3) 1520(T3) 5794(T3) 22694(T3)

freedom 818(Q4) 1522(Q4) 5802(Q4) 22706(Q4)
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Figure 17: Comparison of computational time and efficiency among the FEM-T3-TBC, FEM-Q4-TBC and
ES-FEM-T3-TBC for four meshes for the elastic wave scattering by a circle shaped obstacle: (a) the CPU time
compares the degrees of freedom; (b) computational efficiency (computation time for the solution of the same
accuracy).

faster for solving the problem. Therefore, the computational efficiency (CPU time for
the same accuracy) of the ES-FEM-T3-TBC is higher than that of the two standard FEMs
for Helmholtz equations of the elastic wave scattering problem.

5.2 The elastic wave scattering by infinite cylinder with elliptical section

The second example is concerned about the elastic wave scattering problem by an ob-
stacle composed of an elliptical shape. The illustration about the example is shown in
Fig. 18(a). The long half-axis of the ellipse section is represented by a (a = 2m) and b
(b=1m) is the short half-axis.

(a) (b)

Figure 18: (a) The elastic wave scattering problem by an obstacle with ellipse shape; (b) the schematic diagram
of computational domain of an obstacle with ellipse shape.
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5.2.1 Effect of angular frequency for the elastic wave scattering

In the subsection, we consider the effect of angular frequency on accuracy of (φ,ψ) and
(v1,v2) using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC. The computational
domain with TBC is discretized using triangular elements (11523 nodes and 22536 ele-
ments) and quadrilateral elements (11518 nodes and 11291 elements). Fig. 18(b) shows
the schematic diagram of computational domain with TBC of an obstacle with ellipse
shape. The other parameters are set as in Subsection 5.1.1. It is very difficult to find the
analytical solution for this example, so the reference solution is obtained using the FEM
with six-noded triangular element mesh (FEM-T6), which is a very fined mesh with 22537
nodes and 44474 elements. Several different angular frequencies ω=0.5, 1, 3, 6, 9 rad/s
are considered here. The relative errors of (φ,ψ) and (v1,v2) at r=4m are listed in Tables 7
and 8, separately.

From Tables 7 and 8, before ω≤3 rad/s, the relative errors of three numerical methods
are all very less. But from ω ≥ 6 rad/s, the results of the two standard FEMs begin to
deteriorate, which are greater than 0.1. However, the relative errors of the ES-FEM-T3-
TBC are always less for the elastic wave scattering problem.

Similarly, Figs. 19, 20 and Figs. 21, 22 display (φ,ψ) and (v1,v2) at ω=0.5 and 9 rad/s
versus the polar angle, respectively.

These figures can show the following:

1. At ω = 0.5 rad/s, the numerical solution of three numerical methods agrees well
with reference solution to the elastic wave scattering.

2. With the angular frequency increasing, (φ,ψ) and (v1,v2) of three numerical meth-
ods will deteriorate gradually. However, at ω = 9 rad/s, the results of the two
standard FEMs are obviously worse than that of the ES-FEM-T3-TBC. It also shows

Table 7: The relative errors of (φ,ψ) at different angular frequencies at the circle r=4m using different methods
for the elastic wave scattering by an ellipse-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.0294 0.0129 0.0189 0.1143 0.3220

FEM-Q4-TBC 0.0229 0.0060 0.0166 0.1141 0.3219

ES-FEM-T3-TBC 0.0015 0.0014 0.0073 0.0317 0.1170

Table 8: The relative errors of (v1,v2) at different angular frequencies at the circle r=4m using different methods
for the elastic wave scattering by an ellipse-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.0219 0.0163 0.0418 0.1679 0.4567

FEM-Q4-TBC 0.0172 0.0097 0.0325 0.1539 0.4418

ES-FEM-T3-TBC 0.0050 0.0078 0.0218 0.0562 0.1430
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Figure 19: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=0.5 rad/s
for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of φ; (b) the imaginary part of
φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 20: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=9 rad/s
for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of φ; (b) the imaginary part of
φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 21: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=0.5 rad/s
for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of v1; (b) the imaginary part of
v1; (c) the real part of v2; (d) the imaginary part of v2.
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Figure 22: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=9 rad/s
for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of v1; (b) the imaginary part of
v1; (c) the real part of v2; (d) the imaginary part of v2.
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again that the ES-FEM-T3-TBC is less sensitive to the angular frequency than the
two standard FEMs for the elastic wave scattering.

3. From Fig. 20, it is seen that ψ is worse than φ, especially for the two standard
FEMs. The reason is shear wavenumbers κs is always greater than compressional
wavenumbers κp at the same angular frequency.

5.2.2 Effect of different domain truncation methods

This paper compares the effect of imposed different domain truncation methods (PML
and TBC) on the accuracy of (φ,ψ) for Helmholtz equations in the subsection. The condi-
tions of the PML is the same as in Subsection 5.1.2. The reference solution can be obtained
by the FEM-T6 with the very fine mesh model (22537 nodes, 44474 elements). The com-
putational domain with the TBC is discretized into triangular elements (11523 nodes and
22536 elements) and the computational domain with the PML is discretized into triangu-
lar elements (11523 nodes and 22546 elements). The angular frequencies are set ω=0.5,
1, 3, 6, 9 rad/s. The relative errors of (φ,ψ) at the circle r= 4m using the FEM-T3-PML,
FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-TBC are listed in Table 9.

Table 9: The relative errors of (φ,ψ) using different domain truncation methods for the elastic wave scattering
by an ellipse-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-PML 0.2501 0.0327 0.0380 0.2184 0.6111

FEM-T3-TBC 0.0314 0.0141 0.0220 0.1366 0.4066

ES-FEM-T3-PML 0.0319 0.0030 0.0102 0.0388 0.0944

ES-FEM-T3-TBC 0.0054 0.0020 0.0080 0.0248 0.0708

According to Table 9, it is seen that with the angular frequency increasing, the per-
formance of the FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-TBC will
deteriorate gradually. But compared to other three numerical methods, the ES-FEM-T3-
TBC is more accurate and stable.

Fig. 23 and Fig. 24 show (φ,ψ) compares the polar angle at ω = 0.5 and 9 rad/s at
the circle r = 4m, respectively. From these figures, it can find the same conclusions as
Subsection 5.1.2. Meanwhile, it is seen that the ES-FEM-T3-TBC is an effective alternative
to the ES-FEM-T3-PML.

5.2.3 Convergence study for Helmholtz equations

In this part, the convergence properties of the EEM-T3-TBC, EEM-Q4-TBC and ES-FEM-
T3-TBC will be considered for the elastic wave scattering problem. To show the advan-
tages of the ES-FEM-T3-TBC, several different mesh models are used to discretize the
problem domain. The reference solution can be obtained by the FEM-T6 with very fined
mesh pattern (22537 nodes, 44474 elements). Given angular frequency ω= 3 rad/s, the
corresponding convergence results are shown in Fig. 25 for Helmholtz equations. It is
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Figure 23: The results obtained using the FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-
TBC at ω=0.5 rad/s for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of φ; (b)
the imaginary part of φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 24: The results obtained using the FEM-T3-PML, FEM-T3-TBC, ES-FEM-T3-PML and ES-FEM-T3-
TBC at ω=9 rad/s for the elastic wave scattering by an ellipse-shaped obstacle: (a) the real part of φ; (b) the
imaginary part of φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 25: The convergence for solution from different methods for Helmholtz equations of the elastic wave
scattering by an ellipse shaped domain: (a) convergence of relative errors of the results; (b) convergence ratios
of relative errors of the results.

from Fig. 25(a) seen that three curves of relative errors among three numerical methods
tend to be almost flat with the number of nodes increasing. Furthermore, the relative
errors obtained by three methods converge linearly with the characteristic length of the
mesh. The convergence rate of three numerical methods at ω=3 rad/s is calculated and
as showed in Fig. 25(b). Fig. 25(b) suggests that the convergence rate of the ES-FEM-T3-
TBC (r=2.3004) is larger than the FEM-Q4-TBC (r=1.7738) and FEM-T3-TBC (r=1.6508),
which indicates that the ES-FEM-T3-TBC method has higher convergence rate and accu-
racy for the elastic wave scattering problem.

5.3 The elastic wave scattering by infinite cylinder with peanut section

The scattering of the plane elastic wave by an infinite cylinder with peanut section is
considered as the third numerical example in this section. Fig. 26(a) shows the schematic
diagram about the example. The parametric equations of peanut-shaped are:

x(t)=2.3cos(t)+0.5cos(3t), y(t)=2.3sin(t)+0.5sin(3t), (5.12)

where t is a parameter and t∈ [0,2π].

5.3.1 Effect of angular frequency for the elastic wave scattering

The influence of angular frequency on the accuracy of (φ,ψ) and (v1,v2) using the FEM-
T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC is studied in the subsection. The compu-
tational domain with TBC of an obstacle with peanut shape is presented in Fig. 26(b),
which is discretized using linear triangular elements (3959 nodes and 7618 elements) and
quadrilateral elements (3956 nodes and 3820 elements), respectively. Likewise, the other
parameters are set as in example in Subsection 5.1.1 and the reference solution can be ob-
tained by the FEM-Q4 with very fined mesh pattern (16325 nodes and 16045 elements).
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(a) (b)

Figure 26: (a) The elastic wave scattering problem by an obstacle with peanut shape; (b) the schematic diagram
of computational domain of an obstacle with peanut shape.

Table 10: The relative errors of (φ,ψ) at different angular frequencies using different methods for the elastic
wave scattering by a peanut-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.1732 0.0401 0.0459 0.1664 0.4616

FEM-Q4-TBC 0.0743 0.0098 0.0271 0.1266 0.4407

ES-FEM-T3-TBC 0.0173 0.0050 0.0122 0.0476 0.1605

Table 11: The relative errors of (v1,v2) at different angular frequencies using different methods for the elastic
wave scattering by a peanut-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.0855 0.0380 0.0797 0.2441 0.5798

FEM-Q4-TBC 0.0326 0.0133 0.0501 0.1563 0.4458

ES-FEM-T3-TBC 0.0097 0.0099 0.0264 0.0728 0.2068

Given the angular frequency ω=0.5, 1, 3, 6, 9 rad/s, the relative errors of (φ,ψ) and
(v1,v2) at the circle r = 4m using different methods for the elastic wave scattering by a
peanut-shaped obstacle are listed in Tables 10 and 11.

From Tables 10 and 11, we can find that the ES-FEM-T3-TBC can perform more good
than the two standard FEMs, regardless of the FEM-T3-TBC or FEM-Q4-TBC. In partic-
ular, when the angular frequency is larger for the elastic wave scattering problem, the
ES-FEM-T3-TBC is a satisfactory choice.

5.3.2 Convergence study for Helmholtz equations

The convergence properties of the EEM-T3-TBC, EEM-Q4-TBC and ES-FEM-T3-TBC will
be studied in the subsection. To calculate the convergence property, several different
mesh models are adopted to discretize the problem domain. The reference solution can be
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Figure 27: The convergence for solution from different methods for Helmholtz equations of the elastic wave
scattering by a peanut shaped domain: (a) convergence of relative errors of the results; (b) convergence ratios
of relative errors of the results.

obtained by the FEM-Q4 (16325 nodes and 16045 elements). Given the angular frequency
ω=3 rad/s, the corresponding convergence results are shown in Fig. 27. From Fig. 27(a),
it can be found that the curves of three numerical methods tend almost to be three certain
values with the number of nodes increasing. Fig. 27(b) shows that the convergence rate
of the ES-FEM-T3-TBC (r=2.6995) is more than that of the FEM-Q4-TBC (r=2.2574) and
FEM-T3-TBC (r=2.085).

5.4 The elastic wave scattering by an obstacle with arbitrary shape

In the section, the elastic scattering problem by an obstacle with arbitrary shape is dis-
cussed, whose schematic diagram is shown in Fig. 28(a).

(a) (b)

Figure 28: (a) The elastic wave scattering problem by an obstacle with arbitrary shape; (b) the schematic
diagram of computational domain of an obstacle with arbitrary shape.
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5.4.1 Effect of angular frequency for the elastic wave scattering

In the subsection, we still study that the effect of angular frequency on the accuracy of
(φ,ψ) and (v1,v2) by the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC for the elastic
wave scattering by an arbitrary shaped obstacle. The computational domain with TBC is
discretized using linear triangular elements (3971 nodes and 7658 elements) and quadri-
lateral elements (3974 nodes and 3849 elements), whose schematic diagram is shown in
Fig. 28(b). The other parameters are the same as the example in Subsection 5.1.1 and the
reference solution can be obtained by the FEM-Q4 with 16345 nodes and 16095 elements.

Considering that the angular frequency ω = 0.5, 1, 3, 6, 9 rad/s, the relative errors
of (φ,ψ) and (v1,v2) at the circle r = 4m using different numerical methods are listed in
Tables 12 and 13. In addition, the results (φ,ψ) and (v1,v2) are compared at ω= 1 and 6
rad/s, which are displayed in Figs. 29, 30 and Figs. 31, 32.

Table 12: The relative errors of (φ,ψ) at different angular frequencies using different methods for the elastic
wave scattering by an arbitrary-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.1292 0.0695 0.2920 0.2107 0.5013

FEM-Q4-TBC 0.0497 0.0942 0.0410 0.1775 0.4017

ES-FEM-T3-TBC 0.0491 0.0419 0.0372 0.0574 0.2014

Table 13: The relative errors of (v1,v2) at different angular frequencies using different methods for the elastic
wave scattering by an arbitrary-shaped obstacle.

Method ω=0.5 ω=1 ω=3 ω=6 ω=9

FEM-T3-TBC 0.0935 0.0727 0.4281 0.2930 0.7154

FEM-Q4-TBC 0.0468 0.0983 0.0706 0.2400 0.5999

ES-FEM-T3-TBC 0.0431 0.0460 0.0605 0.0841 0.2892

From these results, we can find that though the accuracy for the elastic wave scat-
tering decreases when the obstacle is a asymmetric and arbitrary shape, the ES-FEM-T3-
TBC can still obtain a higher accuracy than that of the two standard FEMs. Moreover,
the similar conclusions with other three numerical examples can be also obtained. In
other words, at small angular frequency, i.e. ω=1rad/s, the numerical solution is nearly
agreement with reference solution for three numerical methods. However, as the angu-
lar frequency increases, especially, at ω = 6rad/s, the results of the ES-FEM-T3-TBC are
obviously superior to that of the two standard FEMs.

5.4.2 Computational efficiency for Helmholtz equations

In this subsection, the computational efficiency of the FEM-T3-TBC, FEM-Q4-TBC and
ES-FEM-T3-TBC is considered. Similarly, in order to illustrate computational efficiency,
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Figure 29: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=1 rad/s
for the elastic wave scattering by an arbitrary-shaped obstacle: (a) the real part of φ; (b) the imaginary part of
φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 30: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=6 rad/s
for the elastic wave scattering by an arbitrary-shaped obstacle: (a) the real part of φ; (b) the imaginary part of
φ; (c) the real part of ψ; (d) the imaginary part of ψ.
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Figure 31: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=1 rad/s
for the elastic wave scattering by an arbitrary-shaped obstacle: (a) the real part of v1; (b) the imaginary part
of v1; (c) the real part of v2; (d) the imaginary part of v2.
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Figure 32: The results obtained using the FEM-T3-TBC, FEM-Q4-TBC and ES-FEM-T3-TBC at ω=6 rad/s
for the elastic wave scattering by an arbitrary-shaped obstacle: (a) the real part of v1; (b) the imaginary part
of v1; (c) the real part of v2; (d) the imaginary part of v2.
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Table 14: Four meshes used in the example with an arbitrary-shaped obstacle.

mesh1 mesh2 mesh3 mesh4

Nodes 544(T3) 764(T3) 2811(T3) 10176(T3)

543(Q4) 767(Q4) 2815(Q4) 10182(Q4)

Elements 980(T3) 1397(T3) 5365(T3) 19844(T3)

492(Q4) 706(Q4) 2696(Q4) 9962(Q4)

Degrees of 1088(T3) 1528(T3) 5622(T3) 20352(T3)

freedom 1086(Q4) 1534(Q4) 5630(Q4) 20364(Q4)
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Figure 33: Comparison of computational time and efficiency among the FEM-T3-TBC, FEM-Q4-TBC and ES-
FEM-T3-TBC methods for four meshes for the elastic wave scattering by an arbitrary shaped obstacle: (a) the
CPU time compares the degrees of freedom; (b) computational efficiency (computation time for the solution of
the same accuracy).

four mesh patterns are applied here. The details about the meshes are given in Table 14,
including the number of nodes, the number of elements and the degrees of freedom for
the different meshes used in the numerical experiment.

The results of computational efficiency using FEM-T3-TBC, FEM-Q4-TBC and ES-
FEM-T3-TBC based on the same direct solver at the angular frequency ω = 3 rad/s are
shown in Fig. 33. Fig. 33(a) shows the CPU time versus the degrees of freedom and
Fig. 33(b) shows the variety of the numerical error indicators with the CPU time for the
three numerical methods. From these results, while the CPU time of the ES-FEM-T3-TBC
is longer than that of the two standard FEMs, the computational efficiency of the ES-
FEM-T3-TBC is higher than that of the two standard FEMs at the similar number of mesh
nodes. That is to say, for the elastic wave scattering problem, the computational cost of
the ES-FEM-T3-TBC is much less than the two standard FEMs for the same accuracy of
numerical solution.
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6 Conclusions

In this work, an ES-FEM-T3-TBC is presented to solve Helmholtz equations with cou-
pled boundary conditions for the elastic wave scattering by a rigid obstacle with smooth
surface. Four numerical cases are shown to demonstrate the competitiveness and effec-
tiveness of the proposed ES-FEM-T3-TBC for the elastic wave scattering problem. From
these numerical results, the following conclusions can be obtained:

1. Based on the similar number of mesh nodes, compared to the FEM-T3-TBC and
FEM-Q4-TBC, the ES-FEM-T3-TBC is more stable and accurate for the elastic wave
scattering problem.

2. For the convergence property and computational efficiency, the ES-FEM-T3-TBC
performs better than that of the two standard FEMs. Specifically, the convergence
rate of the ES-FEM-T3-TBC is as high as 2.30 in Subsection 5.2.3 and 2.69 in Subsec-
tion 5.3.2.

3. Compared with the two standard FEMs using the triangular elements and quadri-
lateral elements, the ES-FEM-TBC is relatively insensitive to the mesh distortion
and angular frequency.

4. The present ES-FEM-T3-TBC can get higher accuracy of Helmholtz equations than
that of the ES-FEM-T3-PML based on the similar number of nodes and it provides
a feasible alternative to the ES-FEM-T3-PML to handle the elastic wave scattering
problem.

5. At the same angular frequency, the result of ψ is worse than that of φ for the elastic
wave scattering problem.

Therefore, these findings indicate that the ES-FEM-T3-TBC is a reliable and effective
method for the elastic wave scattering problem. Future work is to extend our researches
to the obstacle scattering problem composed of multiple obstacles and study the influ-
ence of other boundary condition for the elastic wave scattering problem.
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Appendix: Analytical solution

In the section, the analytical solution to the elastic wave scattering by a circle-shaped
obstacle in Ref. [28] is given, as follows:

Firstly, to obtain easily the analytical solution, the Helmholtz equations with coupled
boundary conditions Eqs. (2.12) and (2.14) can be re-given in the polar coordinates:

{

∆φ+κ2
pφ=0, ∆ψ+κ2

s ψ=0, in Ω,

∂rφ+∂θψ/R= f (θ), ∂rψ+∂θφ/R= g(θ), on ΓD,
(A.1)

where f (θ)=−ν ·uinc; g(θ)=τ ·uinc.
Then according to the Fourier series expansions in the polar coordinates, the analyti-

cal solution in Eq. (A.2) is obtained:

φ(r,θ)= ∑
n∈Z

H
(1)
n (κpr)

H
(1)
n (κpR)

φ(n)(R)einθ; ψ(r,θ)= ∑
n∈Z

H
(1)
n (κsr)

H
(1)
n (κsR)

ψ(n)(R)einθ , (A.2)

where H
(1)
n is the Hankel function of the first kind with order n. φ(n) and ψ(n) are the

Fourier modes of φ and ψ, respectively.
The solutions φ(n) and ψ(n) in Eqs. (5.8) and (5.9) can be obtained by the following

system equations:






















κpH
(1)′
n (κpR)

H
(1)
n (κpR)

φ(n)+
in

R
ψ(n)= f (n),

κs H
(1)′
n (κsR)

H
(1)
n (κsR)

ψ(n)− in

R
φ(n)= g(n),

(A.3)

where

f (n)=
1

2π

∫ 2π

0
f (θ)e−inθdθ, g(n)=

1

2π

∫ 2π

0
g(θ)e−inθdθ, (A.4)

which can be gained by the fast Fourier transform (FFT).
Finally, the analytical solutions φ and ψ can be obtained from Eq. (A.3).
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