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Abstract. This paper develops an efficient positivity-preserving finite volume scheme
for the two-dimensional nonequilibrium three-temperature radiation diffusion equa-
tions on general polygonal meshes. The scheme is formed as a predictor-corrector al-
gorithm. The corrector phase obtains the cell-centered solutions on the primary mesh,
while the predictor phase determines the cell-vertex solutions on the dual mesh in-
dependently. Moreover, the flux on the primary edge is approximated with a fixed
stencil and the nonnegative cell-vertex solutions are not reconstructed. Theoretically,
our scheme does not require any nonlinear iteration for the linear problems, and can
call the fast nonlinear solver (e.g. Newton method) for the nonlinear problems. The
positivity, existence and uniqueness of the cell-centered solutions obtained on the cor-
rector phase are analyzed, and the scheme on quasi-uniform meshes is proved to be
L2- and H1-stable under some assumptions. Numerical experiments demonstrate the
accuracy, efficiency and positivity of the scheme on various distorted meshes.

AMS subject classifications: 65M08, 65M22
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1 Introduction

The nonequilibrium three-temperature (3-T) radiation diffusion equations are a kind of
strongly nonlinear partial differential equations, and are widely used to describe the en-
ergy evolution and exchanges among the electrons, ions and photons in a multi-material
system. They simulate the radiation transport and arise in a wide range of applications
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such as the astrophysics and the inertial confinement fusion (ICF), see e.g. [6, 7, 12, 15], if
the radiation field is not in thermodynamic equilibrium with the material and the mate-
rial itself is not in equilibrium. Developing the high-order accurate and efficient numer-
ical scheme for the nonequilibrium 3-T radiation diffusion equations is very challenging
and has drawn many researchers’ attention.

In recent years, some numerical methods have been developed for solving the 3-T
radiation diffusion equations, such as the finite volume (FV) methods in [13, 21, 43], the
finite difference methods in [2, 11] and the finite element method in [25]. In [21], a fully
implicit finite volume scheme combined with parallel adaptive multigrid method was
studied in the framework of UG. In [13], a symmetric finite volume element method
(SFVE) was designed with a preconditioning technique, a mesh adaptation algorithm
and a two-grid procedure. In [43], two substructuring nonoverlapping domain decom-
position preconditioners were employed to solve the SFVE discretization of 2D 3-T radi-
ation diffusion equations with strongly discontinuous coefficients. In [2,11], the Newton-
Krylov method was used to solve the finite difference schemes for 2D 3-T radiation equa-
tions. In [25], the freezing coefficient method was adopted to linearize the nonlinear
equations and then the resulting equations were solved by the Raviart-Thomas mixed
finite element method. Unfortunately, those schemes only work on the rectangular or
triangular meshes.

In many applications such as the radiation hydrodynamics solved by the Lagrangian
method, the meshes become usually distorted and concave with or without hanging
nodes due to the complex fluid flow. Developing an efficient numerical scheme for the
3-T radiation diffusion equations on arbitrary polygonal meshes is one of the signifi-
cant requirements. Recently, some schemes have been proposed on general polygonal
meshes. In [41], a Lions domain decomposition algorithm based on a cell functional min-
imization scheme was studied on non-matching multi-block grids for the nonlinear radi-
ation diffusion equations. In [5], a set of numerical schemes were developed for the 3-T
radiation diffusion equations in systems involving multi-materials. In [32], a monotone
cell-centered scheme for diffusion equation was used for the 3-T radiation diffusion equa-
tions on convex polygons and the interpolation algorithms suggested in [9] was adopted
to evaluate the cell-vertex unknowns.

In many situations, another significant requirement of the numerical schemes for the
3-T radiation diffusion equations is that the discrete solution should be nonnegative.
Prior non-negative formulations for single diffusion problems were broadly studied over
the years. A typical formulation is constrained optimization-based finite element method
for transient diffusion equations, see standard linear finite element method [19], mixed
finite element methods [24], the classical Galerkin formulation [22, 23]. It is not suitable
for polygonal meshes. Le Potier [29] proposed a monotone cell-centered finite volume
scheme for the steady-state diffusion equations on triangular meshes. Since then, this
approach have been developed to obtain numerous positivity-preserving finite volume
schemes on general grids, see [4, 10, 16, 17, 33, 44, 45] and the references therein. This pa-
per is concerned with the finite volume schemes. There exist some positivity-preserving
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finite volume works for 3-T radiation equations. The first scheme in [8] preserves the
positivity of the temperature if and only if the maximal interior angle of the primary par-
tition is not greater than π/2, while the second one in [8] preserves the solution positivity
by two post-processing techniques, i.e., the global repair technique [37] and the cutoff
method [20], which possibly destroy the accuracy and the energy conservation. Recently,
a cell-centered nonlinear finite volume scheme satisfying the discrete maximum princi-
ple was proposed in [42] for the nonequilibrium 3-T equations. A cell-vertex positivity-
preserving scheme was studied in [34] for the 2D 3-T radiation diffusion equations but
it only preserved the conservation property on the dual mesh. A nonlinear positivity-
preserving scheme was proposed in [28], which was an extension of the scheme in [10],
and the truncation error was not analyzed.

In fact, the mechanism for all the aforementioned FV schemes that can preserve so-
lution positivity is that the resulting coefficient matrix or its transpose is an M-matrix.
Therefore, the nonlinear solver must be chosen in such a way that the structure of the
M-matrix is not spoiled. At the present, the Picard method and its Anderson acceleration
method [3] are widely used since they can maintain the M-matrix structure of the coef-
ficient matrix. In [18], the Anderson acceleration was first applied to the Picard method
in the framework of nonlinear monotone FV schemes for advection-diffusion problems.
In [1], the Anderson acceleration of the Picard method was employed to solve the fi-
nite difference scheme of the 3-T equations and two strategies were used to improve its
robustness. Unfortunately, in the case of strongly anisotropic media with the highly dis-
torted mesh, the Picard method, even its Anderson acceleration, usually converges very
slowly. As we know, the Newton method has a second-order convergence rate, and has
been used to solve the nonlinear positivity-preserving FV schemes or FV schemes satisfy-
ing the discrete maximum principle, see e.g. [26,27,31,36] for two- and three-phase flows
and so on. However, the positivity of the numerical solutions for the nonlinear system is
uncertain, see [31] for a detailed discussion.

The aim of this paper is to improve the scheme proposed in [33] for the single dif-
fusion equation and extend it to the nonequilibrium 3-T equations, with the positivity-
preserving property. The newly resulting scheme is formed as a predictor-corrector algo-
rithm. The corrector phase determines the cell-centered solutions on the primary mesh,
while the predictor phase obtains the cell-vertex solutions on the dual mesh indepen-
dently. Based on the original idea of the fixed-stencil flux discretizations in [10], the
flux approximation is constructed in the corrector phase, which differs from that in [33].
Specifically, the flux approximation is based on the fixed decomposition of the co-normal
and the temperature on the vertex is not required to be nonnegative. As a result, the trun-
cation technique for the vertex values in [33] is avoided and the conservation on the dual
mesh is maintained. In Comparison with the existing positivity-preserving or maximum-
preserving schemes for the 3-T radiation equations, such as [28, 34, 42], our scheme does
not need any nonlinear iteration for the linear problems and the general nonlinear itera-
tive methods, such as the Newton method, can be used for the nonlinear problems. For
the nonlinear diffusion coefficients with a flux-limiter, the Jacobian-free Newton-Krylov
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method can be selected to avoid computing Jacobian matrices.
The rest of this paper is organized as follows. In Section 2, a short description of the

nonequilibrium 3-T radiation diffusion equations and the mesh notations are presented.
The positivity-preserving scheme is constructed in Section 3, and in Section 4, the positiv-
ity, existence and uniqueness of the cell-centered unknowns are proved and the stability
of the scheme is analyzed on quasi-uniform meshes. Finally, numerical examples are
conducted in Section 5 to validate the effectiveness of our scheme and some concluding
remarks are given in Section 6.

2 3-T radiation diffusion equations and mesh notations

Denote ΩT = Ω×(0,T], where Ω is an open bounded connected polygonal domain in
R

2 and (0,T] is the time interval. Consider the nonequilibrium 3-T radiation diffusion
equations [1, 21, 25, 42] in ΩT

ρcve
∂Te

∂t
−∇·(κe∇Te)=ρωei(Ti−Te)+ρωer(Tr−Te)+Qe, (2.1)

ρcvi
∂Ti

∂t
−∇·(κi∇Ti)=ρωei(Te−Ti)+Qi, (2.2)

ρcvr
∂Tr

∂t
−∇·(κr∇Tr)=ρωer(Te−Tr)+Qr, (2.3)

where Tα, α= e,i,r, are the electron, ion and photon temperatures, respectively, ρ denotes
the material density, ωei (resp. ωer) is the energy exchange coefficient between electron
and ion (resp. photon), κα = κα(Tα), α= e,i,r, are scalar diffusion coefficients of the elec-
tron, ion and photon, respectively, cvα, α= e,i,r, are the thermal capacities of the electron,
ion and photon, respectively, and Qα, α= e,i,r, are the source terms. All the aforemen-
tioned coefficients are assumed to be positive. The boundary and initial conditions are
separately specified as follows:





Tα(x,t)= gD
α (x,t), on ΓD,

−κα
∂Tα(x,t)

∂n
= gN

α (x,t), on ΓN ,
(2.4)

and
Tα(x,0)=hα(x), in Ω, (2.5)

where ΓD and ΓN denote respectively Dirichlet and Neumann boundaries, n is the unit
outward normal vector to the boundary ∂Ω, and gD

α (x,t), gN
α (x,t) and hα(x) are given

functions, α= e,i,r.
As shown in Fig. 1(a), the domain Ω is partitioned into a number of non-overlapped

polygonal cells that form the so-called primary mesh, depicted by solid line segments.
Make sure that the line segments of the primary mesh are aligned with possible discon-
tinuities. The hollow circles, solid circles, and hollow squares denote respectively the
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(a) The primary mesh and its dual mesh.
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(b) Notations related to a primary cell and a dual cell.

Figure 1: Meshes and the related notations.

cell centers, the vertices, and the edge midpoints of the primary mesh. Each cell in the
primary mesh (i.e., the primary cell) is further partitioned into several quadrilateral sub-
cells by connecting the cell center with the edge midpoints. All subcells sharing the same
vertex in the primary mesh form a polygonal cell of the dual mesh. For example, the shad-
owed polygon in Fig. 1(a) stands for the dual cell associated with the vertex xν. The dual
mesh makes sense under the following geometric assumption:

(H1) All primary cells are star-shaped with respect to their cell centers, i.e., any ray
emanating from the cell center intersects the cell boundary at exactly one point.

Denote M={K} the set of all primary cells, such that Ω=∪K∈MK. See Fig. 1(b), for
a generic primary cell K in M (the quadrilateral with solid line segments), its number of
edges, cell center, measure, set of edges are denoted as nK, xK, |K| and EK, respectively.
Define hK=max

xA ,xB∈K |xAxB| and denote the mesh size by h=maxK∈MhK. For σ∈EK, its
measure, unit outward normal vector, midpoint and two endpoints are denoted as |σ|,
nK,σ, xσ, xν and xν′ , respectively. For xν ∈Ω, denote its associated dual cell by K∗

ν and the
unit outward normal vector to ∂K∗

ν by n
∗
ν. σ∗

K is the dual edge connecting xK and xσ.
Here we introduce two unknowns on the primary mesh and its dual counterpart,

respectively. The cell-vertex unknowns are defined at the vertices of the primary mesh in
Ω or on ∂Ω\ΓD. The cell-centered unknowns are defined at the cell centers of the primary
mesh. Each cell-vertex or cell-centered unknown has an FV equation associated with it.
In addition, we denote Tα,K and Tα,ν as the approximation of Tα at xK and xν, respectively.

Throughout this paper, the bold capital letter, such as F, T, denotes the vector or the
matrix with one column, while the hollow capital letter, such as A, E, represents the
matrix with more than one column.

3 Positivity-preserving scheme

Our positivity-preserving scheme consists of the predictor and corrector phases. The cell-
vertex solutions are obtained in the predictor phase, while the cell-centered solutions are
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finally determined in the corrector phase. Hence, the FV equations for the cell-vertex
and cell-centered unknowns are orderly constructed in those two phases. Hereafter, we
use the tilde notation i.e. T̃ for the temperatures obtained from the predictor phase to
distinguish them from the corrector phase.

3.1 Predictor phase

Integrating (2.1)-(2.3) over the dual cell K∗
ν with respect to xν respectively, and using the

Gauss divergence theorem, yields

∫

K∗
ν

ρcve
∂Te

∂t
dx+ ∑

σ∗
K∈∂K∗

ν

F e
K,σ∗ =

∫

K∗
ν

ρωei(Ti−Te)dx+
∫

K∗
ν

ρωer(Tr−Te)dx+
∫

K∗
ν

Qedx, (3.1)

∫

K∗
ν

ρcvi
∂Ti

∂t
dx+ ∑

σ∗
K∈∂K∗

ν

F i
K,σ∗ =

∫

K∗
ν

ρωei(Te−Ti)dx+
∫

K∗
ν

Qidx, (3.2)

∫

K∗
ν

ρcvr
∂Tr

∂t
dx+ ∑

σ∗
K∈∂K∗

ν

F r
K,σ∗ =

∫

K∗
ν

ρωer(Te−Tr)dx+
∫

K∗
ν

Qrdx, (3.3)

where ∂K∗
ν is the boundary of K∗

ν , and F α
K,σ∗ denotes the continuous flux on the dual edge

σ∗
K, i.e.,

F α
K,σ∗ =−

∫

σ∗
K

κα∇Tα ·n∗
νds, (3.4)

where n
∗
ν is the unit outward normal vector to ∂K∗

ν . In the following, we will discretize
the continuous flux F α

K,σ∗ and construct the fully discrete FV equations for the cell-vertex
unknowns.

3.1.1 Flux approximations on the dual edges

Instead of building those flux approximations one after another, we gather all the ones in-
side K into a vector F

α
K=(Fα

K,σ∗ , σ∈EK)
T∈RnK where Fα

K,σ∗ denotes the flux approximation
across the dual edge σ∗

K, given by

Fα
K,σ∗ ≈−

∫

σ∗
K

κα∇Tα ·n∗
K,σds,

where n
∗
K,σ is a unit vector normal to σ∗

K and its direction is fixed (See Fig. 1(b)). All n
∗
K,σ

inside K are oriented clockwise so that n
∗
ν =−n

∗
K,σ and n

∗
ν′ =n

∗
K,σ. From (3.4), we have

Fα
K,σ∗ ≈ (n∗

K,σ ·n∗
ν)F α

K,σ∗ . (3.5)

We calculate F
α
K by the following algebraic system

F
α
K =A

α
KδT̃

α
K , (3.6)
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where Aα
K, the cell matrix to be determined, is of size nK×nK and δT̃

α
K = (T̃α,ν′−

T̃α,ν, σ=[xν;xν′ ]∈ EK)
T ∈RnK is a vector containing all the successive differences of the

cell-vertex unknowns (ordered anticlockwise) along the boundary ∂K. Once the cell ma-
trix Aα

K is specified, all the nK flux discretizations inside K are obtained. In the following,
we introduce a constructive algorithm for Aα

K.
According to the linearity-preserving criterion [39] (i.e., all derivations are exact

whenever the solution is piecewise linear and the diffusion tensor is piecewise constant
with respect to the primary mesh), we require that (3.6) is exact for the linear solution T̃α

and a constant diffusion coefficient κα = κα,K, where κα,K is the constant restriction of the
diffusion coefficient κα on K. Then we have

κα,KFK =A
α
KXK, (3.7)

where FK and XK are two nK×2 matrices, given by

FK =(−|σ∗
K|n∗

K,σ, σ∈EK)
T, XK =(xν′−xν, σ∈EK)

T, (3.8)

here |σ∗
K| is the measure of σ∗

K. Let

A
α
K =κα,KAK,

where AK is not related to T̃α,K and κα,K. As a result, we have

FK =AKXK. (3.9)

Recalling the fact that (see Lemma 3.1 in [40])

F
T

KXK = |K|I2, (3.10)

where I2 is the 2×2 identity matrix, (3.10) can be rewritten as

1

|K|FKF
T

KXK =FK.

Comparing it to (3.9) and adding a certain stabilized term [40] gives

AK =
1

|K|FKF
T

K+γKCKC
T

K, (3.11)

where γK is a positive parameter and CK is an nK×nK matrix, whose column vectors span
the null space of XT

K [40]. Generally speaking, CK is not unique and two candidates are
listed below

CK =IK−
1

|K|FKX
T

K, (3.12)

or
CK =IK−XK(X

T

KXK)
−1

X
T

K, (3.13)
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where IK is the nK×nK identity matrix. In [38], a formula for the inverse matrix of AK

was given as follows

A
−1
K =

1

|K|XKX
T

K+γKC
T

KCK, (3.14)

where CK is defined by (3.12). In the numerical examples, we choose (3.14). γK is
related to ̺

K
in Lemma 4.1, see Theorem 5 in [38]. To balance the first and the stabi-

lized terms in (3.14) and then improve the property of AK, a natural selection of γK is
trace((1/|K|)XKXT

K) [38].

Lemma 3.1 (Theorem 3.2 in [40] or Theorem 2 in [38]). The cell matrix AK, defined by (3.11)
or (3.14), satisfies (3.9) and is symmetric and positive definite.

There are no finite volume equations associated with the vertices on the Dirichlet
boundary. If xν∈ΓN , the dual cell of xν has some edges located on the Neumann boundary
and the Neumann boundary data are directly integrated into the corresponding finite
volume equation.

Remark 3.1. It is emphasized that the nonlinear diffusion coefficients are defined at
the centers of the primary cells. To calculate the nonlinear diffusion coefficients, the
cell-centered temperatures are required. In order to decouple the cell-centered un-
knowns and the cell-vertex unknowns, here the cell-centered temperatures are inter-
polated by the cell-vertex unknowns. Under the assumption (H1), the second-order
positivity-preserving interpolation algorithm proposed in [38] is a candidate. Here, for
self-completeness of the present paper, we give its brief description. Let the vertices of
cell K be denoted as xi (1 ≤ i ≤ nK), which are ordered anticlockwisely. We have the
following formula

T̃α,K=
1

∑
nK
i=1(ζi+ηi)

nK

∑
i=1

(ζiT̃α,j(i)+ηiT̃α,j(i)+1), (3.15)

where T̃α,l(l= j(i), j(i)+1) denotes the approximation of Tα at xl

ζi =
R(xi+1−xi)

TR(xj(i)+1−xK)

(xj(i)−xK)TR(xj(i)+1−xK)
, ηi =

R(xi+1−xi)
TR(xj(i)−xK)

(xj(i)+1−xK)TR(xj(i)−xK)
, R=

(
0 1
−1 0

)
,

and index j(i) is selected in such a way that the normal vector R(xi+1−xi) is located
between xj(i)−xK and xj(i)+1−xK. Seeing that T̃α,l may be negative, then T̃α,K may not be
nonnegative by (3.15). To maintain the positivity of the nonlinear diffusion coefficients,
we can use the cutoff method [20] to obtain the cell-centered diffusion coefficients by the
following

κα,K =κα(max{T̃α,K,ε}), (3.16)

where ε is a positive number up to the machine precision.
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3.1.2 FV equations of the cell-vertex unknowns

Since the parameters ρ, cvα, ωei and ωer are possibly discontinuous across the interfaces of
different material areas, the approximate values of these parameters inside the dual cells
need to be considered specially. Let η (= ρ,cvα,ωei or ωer) be a possibly discontinuous
parameter, then the restriction of η on the dual cell K∗

ν is given by

ην(t) :=
1

|K∗
ν |
∫

K∗
ν

η(x,t)dx≈ 1

|K∗
ν | ∑

K∈Mν

η(xK,t)|K∗
ν∩K|, (3.17)

where Mν denotes the set of primary cells sharing the vertex xν. If η is dependent of Tα,
(3.17) is updated by

ην(t)≈
1

|K∗
ν | ∑

K∈Mν

η(xK,T̃α,K,t)|K∗
ν∩K|, (3.18)

where T̃α,K is obtained by (3.15).

For the temporal discretization, we use the backward Euler method. Let [0,T] be split
by 0= t0< t1< ···< tN−1< tN=T with the time stepsize τ. Let Eν be the set of primary cell
edges sharing the vertex xν. By the definition of the discrete flux F

α
K =(Fα

K,σ∗ , σ∈EK)
T in

(3.6), the FV equations with respect to the vertex xν ∈Ω\ΓD are constructed as follows:

En+1
e,ν

T̃n+1
e,ν − T̃n

e,ν

τ
+ ∑

K∈Mν

∑
σ⊂EK∩Eν

(n∗
K,σ ·n∗

ν)Fe,n+1
K,σ∗

=Wn+1
ei,ν (T̃n+1

i,ν − T̃n+1
e,ν )+Wn+1

er,ν (T̃n+1
r,ν − T̃n+1

e,ν )+|K∗
ν |Qn+1

e,ν , (3.19)

En+1
i,ν

T̃n+1
i,ν − T̃n

i,ν

τ
+ ∑

K∈Mν

∑
σ⊂EK∩Eν

(n∗
K,σ ·n∗

ν)Fi,n+1
K,σ∗ =Wn+1

ei,ν (T̃n+1
e,ν − T̃n+1

i,ν )+|K∗
ν |Qn+1

i,ν , (3.20)

En+1
r,ν

T̃n+1
r,ν − T̃n

r,ν

τ
+ ∑

K∈Mν

∑
σ⊂EK∩Eν

(n∗
K,σ ·n∗

ν)Fr,n+1
K,σ∗ =Wn+1

er,ν (T̃n+1
e,ν − T̃n+1

r,ν )+|K∗
ν |Qn+1

r,ν , (3.21)

where

Qn+1
α,ν =

1

|K∗
ν |
∫

K∗
ν

Qα(x,tn+1)dx,

En+1
e,ν =ρn+1

ν cn+1
ve,ν |K∗

ν |, En+1
i,ν =ρn+1

ν cn+1
vi,ν |K∗

ν |, En+1
r,ν =ρn+1

ν cn+1
vr,ν |K∗

ν |,
Wn+1

ei,ν =ρn+1
ν ωn+1

ei,ν |K∗
ν |, Wn+1

er,ν =ρn+1
ν ωn+1

er,ν |K∗
ν |.

Here ρn+1
ν , cn+1

vα,ν , ωn+1
ei,ν and ωn+1

er,ν are computed by (3.17) or (3.18) with t= tn+1. Note that
by (3.5), the factor (n∗

K,σ ·n∗
ν) (=1 or −1) is added to preserve the true flux orientation.
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3.2 Corrector phase

Integrating (2.1)-(2.3) over the primary cell K, using the Gauss divergence theorem, we
obtain

∫

K
ρcve

∂Te

∂t
dx+ ∑

σ∈EK

F e
K,σ =

∫

K
ρωei(Ti−Te)dx+

∫

K
ρωer(Tr−Te)dx+

∫

K
Qedx, (3.22)

∫

K
ρcvi

∂Ti

∂t
dx+ ∑

σ∈EK

F i
K,σ=

∫

K
ρωei(Te−Ti)dx+

∫

K
Qidx, (3.23)

∫

K
ρcvr

∂Tr

∂t
dx+ ∑

σ∈EK

F r
K,σ =

∫

K
ρωer(Te−Tr)dx+

∫

K
Qrdx, (3.24)

where F α
K,σ denotes the continuous flux on the primary edge σ, i.e.,

F α
K,σ =−

∫

σ
κα∇Tα ·nK,σds. (3.25)

Next we will approximate F α
K,σ and construct the FV equations for the cell-centered

unknowns. To preserve the positivity of the cell-centered unknowns, in the most exist-
ing work, such as [33], the discretization of the continuous primary flux is based on the
convex decomposition of the co-normal καnK,σ. Along this approach, the nonnegativity
of the cell-vertex unknowns required. Hence, an additional procedure, such as the trun-
cation technique, is adopted to maintain the nonnegativity of the cell-vertex unknowns,
which leads to a possible violation of the local conservation on the dual mesh. To over-
come this problem, motivated by [10], here we suggest a new approach to construct the
FV equations for the cell-centered unknowns.

3.2.1 Flux approximations on the primary edges

As shown in Fig. 2, we recall that the primary cell K is a star-shaped cell with respect to
its center xK, and σ is an edge of K with the endpoints xν and xν′ . Then for the normal
vector nK,σ, we have the following fixed decomposition

|σ|nK,σ =βK,σxKxν+γK,σxKxν′ , (3.26)

xν′

xν

σ
xK

xL

nK,σ

Figure 2: Notations of the normal decomposition.
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where xKxν (resp. xKxν′) denotes the column vector pointing from xK to xν (resp. xν′) and

βK,σ =
|σ|nK,σ ·RxKxν′

xKxν ·RxKxν′
, γK,σ=

|σ|nK,σ ·RxK xν

xKxν′ ·RxKxν
.

Lemma 3.2 (Theorem 3.1 in [10]). Assume that K is star-shaped with respect to its center xK.
Then, for the coefficients in (3.26), we have

βK,σ+γK,σ>0. (3.27)

From (3.26) and the definition of the flux (3.25), we obtain the one-sided flux approx-
imation

Fα
K,σ=κα

K(βK,σ(Tα,K− T̃α,ν)+γK,σ(Tα,K− T̃α,ν′)). (3.28)

Similarly, if σ∈EL for the neighboring cell L, we can obtain another one-sided flux ap-
proximation

Fα
L,σ=κα

L(βL,σ(Tα,L− T̃α,ν)+γL,σ(Tα,L− T̃α,ν′)). (3.29)

For an interior edge σ∈EK∩EL, we define a new and unique flux as a combination of the
above two one-sided fluxes [29], i.e.

F̃α
K,σ =µK,σFα

K,σ−µL,σFα
L,σ, F̃α

L,σ=µL,σFα
L,σ−µK,σFα

K,σ, (3.30)

where µα
K,σ and µα

L,σ are two nonnegative parameters to be determined, satisfying

µα
K,σ+µα

L,σ=1. (3.31)

Obviously, we have the local conservation condition

F̃α
K,σ+ F̃α

L,σ=0. (3.32)

Substituting (3.28) and (3.29) into the first equation of (3.30), gives

F̃α
K,σ=µα

K,σκα
K(βK,σ+γK,σ)Tα,K−µα

L,σκα
L(βL,σ+γL,σ)Tα,L+Bα

σ, (3.33)

where
Bα

σ=−µα
K,σaα

K,σ+µα
L,σaα

L,σ (3.34)

and
aα

K,σ =κα
K(βK,σT̃α,ν+γK,σT̃α,ν′), aα

L,σ=κα
L(βL,σT̃α,ν+γL,σT̃α,ν′).

To maintain the positivity-preserving property, a sufficient condition is that the basis of
the entire formulation, i.e. the flux approximation (3.33) possesses two-point type with
nonnegative coefficients. Based on (3.31) and (3.34), we choose

µα
K,σ=





0.5, if aα
K,σ = aα

L,σ =0,

|aα
L,σ|

|aα
K,σ|+|aα

L,σ|
, otherwise,

(3.35)
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and µα
L,σ = 1−µα

K,σ. It is easy to see that Bα
σ = 0 if aα

K,σaα
L,σ ≥ 0 so that (3.33) possesses

two-point type with nonnegative coefficients. Special treatment is needed for the case of
aα

K,σaα
L,σ <0. Define Bα,±

σ =(|Bα
σ|±Bα

σ)/2 and rewrite Bα
σ as

Bα
σ=

Bα,+
σ

|T̃α,K|
Tα,K−

Bα,−
σ

|T̃α,L|
Tα,L+ B̃α

σ,

where T̃α,K and T̃α,L are interpolated by (3.15), and

B̃α
σ=

Bα,+
σ

|T̃α,K|
(|T̃α,K|−Tα,K)−

Bα,−
σ

|T̃α,L|
(|T̃α,L|−Tα,L). (3.36)

We ignore B̃α
σ to reach a new definition of the unique edge flux. Finally, the flux approxi-

mations are given by

F̃α
K,σ=Aα

K,σTα,K−Aα
L,σTα,L, F̃α

L,σ=Aα
L,σTα,L−Aα

K,σTα,K (3.37)

where

Aα
K,σ=

{
µα

K,σκα
K(βK,σ+γK,σ), aα

K,σaα
L,σ≥0,

µα
K,σκα

K(βK,σ+γK,σ)+
Bα,+

σ

|T̃α,K |
, aα

K,σaα
L,σ<0,

Aα
L,σ=

{
µα

L,σκα
L(βL,σ+γL,σ), aα

K,σaα
L,σ ≥0,

µα
L,σκα

L(βL,σ+γL,σ)+
Bα,−

σ

|T̃α,L|
, aα

K,σaα
L,σ <0.

It is obvious that these two-point fluxes are nonlinear and the local conservation condi-
tion (3.32) is still maintained.

Remark 3.2. Here we evaluate the truncation term B̃α
σ. On the one hand, T̃α,K−Tα,K =

O(h2) for any K∈M holds in the sense of truncation error. If Tα,K is nonnegative (which
will be proved in Theorem 4.1), we can have |T̃α,K|−Tα,K ≤ |T̃α,K−Tα,K|=O(h2). On the
other hand, it is deduced from (3.35) and (3.34) that

|Bα
σ|=

−2aα
K,σaα

L,σ

|aα
L,σ−aα

K,σ|
≤max

σ∈E
{|aα

K,σ|,|aα
L,σ|}

for the case of aα
K,σaα

L,σ < 0. Here |aα
K,σ| ≤ κα

K max{|βK,α|,|γK,α|}max{|T̃α,ν|,|T̃α,ν′ |}, where
βK,α and γK,α are independent of h. Hence, there exists a constant C which depends only
on the mesh and κα, such that |Bα

σ| ≤ maxσ∈E{|aα
K,σ |,|aα

L,σ|} ≤ C. As a result, the term

B̃α
σ=O(h2) can be obtained if T̃α,KT̃α,L 6=0.

In practical computation, we introduce a small positive quantity ε such that T̃α,K = ε
if T̃α,K = 0. In general, ε is chosen to be a small number, say, 10−10 in double precision.
Numerical results in Section 5 show that this procedure does not affect the accuracy.
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As for a boundary edge σ∈EK∩ΓD, we have Bα
σ=−aα

K,σ. Then we simply set

F̃α
K,σ=κα

K(βK,σ+γK,σ)Tα,K+Bα,+
σ −Bα,−

σ , (3.38)

where Bα,+
σ can be handled in a way analogous to that of an interior edge while Bα,−

σ is
moved to the right-hand side of the final FV equation. If σ∈ΓN , it can be deduced from
the boundary condition (2.4) that

F̃α
K,σ=

∫

σ
gN

α ds. (3.39)

From the above derivation, we find that the new flux approximation has a fixed stencil
and the cell-vertex unknowns are not required to be nonnegative. These features will
make our scheme more flexible and easy for implementation.

3.2.2 FV equations for the cell-centered unknowns

Recall that the parameters in (3.22)-(3.24) are continuous on each primary cell. For a
parameter η (=ρ,cvα,ωei or ωer), the restriction on the primary cell K is given by

ηK(t)=
1

|K|
∫

K
η(x,t)dx. (3.40)

If η is dependent of Tα, (3.40) is updated by

ηK(t)=
1

|K|
∫

K
η(x,T̃α,K,t)dx, (3.41)

where T̃α,K is computed by (3.15).
Based on the flux discretizations in (3.37)-(3.39), we obtain the following FV equations

of the cell-centered unknown on the primary cell K:

En+1
e,K

Tn+1
e,K −Tn

e,K

τ
+ ∑

σ⊂EK

F̃e,n+1
K,σ

=Wn+1
ei,K (Tn+1

i,K −Tn+1
e,K )+Wn+1

er,K (Tn+1
r,K −Tn+1

e,K )+|K|Qn+1
e,K , (3.42)

En+1
i,K

Tn+1
i,K −Tn

i,K

τ
+ ∑

σ⊂EK

F̃i,n+1
K,σ =Wn+1

ei,K (Tn+1
e,K −Tn+1

i,K )+|K|Qn+1
i,K , (3.43)

En+1
r,K

Tn+1
r,K −Tn

r,K

τ
+ ∑

σ⊂EK

F̃r,n+1
K,σ =Wn+1

er,K (Tn+1
e,K −Tn+1

r,K )+|K|Qn+1
r,K , (3.44)

where

Qn+1
α,K =

1

|K|
∫

K
Qα(x,tn+1)dx,
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and

En+1
e,K =ρn+1

K cn+1
ve,K|K|, En+1

i,K =ρn+1
K cn+1

vi,K |K|, En+1
r,K =ρn+1

K cn+1
vr,K|K|,

Wn+1
ei,K =ρn+1

K ωn+1
ei,K |K|, Wn+1

er,K =ρn+1
K ωn+1

er,K |K|.

Here, ρn+1
K , cn+1

vα,K, ωn+1
ei,K and ωn+1

er,K are computed by (3.40) or (3.41) with t= tn+1.

3.3 Implementation of the scheme

Denote the numbers of elements in set V and M by Nν and Nc, respectively, where V is
the set of vertices in Ω/ΓD. Let

T
n+1
ν =

(
T̃n+1

e,ν ,T̃n+1
i,ν ,T̃n+1

r,ν , xν ∈V
)T

, T
n+1
c =(Tn+1

e,K ,Tn+1
i,K ,Tn+1

r,K , K∈M)T

be the cell-vertex and cell-centered unknown vectors with dimensions 3Nν and 3Nc, re-
spectively. Recalling once again that the diffusion coefficients are defined at the cell cen-
ters, we define a vector with respect to the diffusion coefficients by

K
n+1
c =(κn+1

e,K ,κn+1
i,K ,κn+1

r,K , K∈M)T,

where κn+1
α,K is computed by (3.16). Using those notations, the FV equations in (3.19)-(3.21)

and (3.42)-(3.44) can be rewritten in the following matrix forms

(En+1
ν +τA

n+1
ν (Kn+1

c ))Tn+1
ν =E

n+1
ν T

n
ν +τF

n+1
ν , (3.45)

and
(En+1

c +τA
n+1
c (Kn+1

c ,Tn+1
ν ))Tn+1

c =E
n+1
c T

n
c +τF

n+1
c , (3.46)

where En+1
ν and En+1

c are the diagonal matrices, whose diagonal entry are composed of
En+1

α,ν and En+1
α,K , respectively. An+1

ν and An+1
c (resp. F

n+1
ν and F

n+1
c ) are the coefficient ma-

trices, generated from the flux approximations and the exchange term (resp. the source
terms and the boundary data). It is easy to deduce from Lemma 3.1 that the coefficient
matrix of (3.45) is symmetric and positive definite, while the coefficient matrix of (3.46) is
a strict M-matrix [10].

At each time step, the cell-vertex solutions are obtained by solving (3.45) at the pre-
dictor phase, while the cell-centered solutions are determined by solving (3.46) at the
corrector phase.

The detailed procedures to implement the algorithm are summarized in Algorithm 1.

Remark 3.3. For the above FV scheme, we have the following comments.

• If (2.1)-(2.3) is a linear problem, then K
n+1
c is independent of Tn+1

α and as a result,
(3.45) is a linear system. Then the scheme does not any need nonlinear iteration and
we only need to solve two linear systems of equations.
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Algorithm 1: The predictor-corrector algorithm.

1 Compute T
0
ν and T

0
c by the initial condition.

2 do n=0,1,2,···
3

Evaluate K
n+1
c by the formula (3.16).

Solve the nonlinear system (3.45) to obtain T
n+1
ν and K

n+1
c .

}
The predictor phase

4
Substitute T

n+1
ν and K

n+1
c into (3.46) and solve the resulting

linear system to get T
n+1
c .

}
The corrector phase

5 end

• Compared with the scheme in [33], the new scheme does not need the post-
positivity-processing procedure for T

n+1
ν , therefore the local conservation on the

dual mesh is maintained.

• In the most existing cell-centered schemes, the cell-vertex unknowns are treated
as auxiliary ones for the finite volume equations on the primary mesh. From this
perspective, here the FV equations on the dual mesh can be considered as a certain
predictor to obtain the cell-vertex unknowns.

• In practical calculation, the efficiency of the nonlinear solver is another important
issue. In our scheme, certain nonlinear iterative method must be employed to
solve the equations of the cell-vertex unknowns. Since the positivity-preserving
mechanism of the cell-centered unknowns is independent of the nonlinear solver,
we are allowed to choose an efficient one, such as the Newton method. As for the
nonlinear diffusion coefficients with a flux limiter, the calculation of Jacobian matrix
is very difficult. In this case, the Jacobian-free Newton-Krylov method [14] can be
adopted. It should be noted that the Jacobian-free Newton-Krylov method can not
provide arbitrary reduction due to the initial residual (usually, no more than 6∼ 7
orders of magnitude). Thus the conservation property will be guaranteed only to
this tolerance at each time step.

At last, we give a comparison of the existing positivity-preserving finite volume
schemes for the 3-T radiation diffusion equations in Table 1, which shows the advantages
of the newly resulting scheme.

4 Theoretical analysis

This section will analyze the positivity, existence and uniqueness of the cell-centered un-
knowns, and the L2- and H1-stability of the scheme on quasi-uniform meshes.

Theorem 4.1. Assume that Qα≥0, gD
α ≥0 and gN

α ≤0. Then, for given T
n+1
ν and K

n+1
c , (3.46)

has a unique solution, and if T
n
c ≥0, the solution is nonnegative.
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Table 1: Comparison of the existing positivity-preserving finite volume schemes for the 2D 3-T radiation diffusion
problems.

Scheme Unknowns Interpolation
Local
conservation

Nonlinear iteration

Linear problems Nonlinear problems

[32] Cell-centered
√a Primary mesh

√c √c

[8]1 Cell-vertex × Dual mesh × √c

[42] Cell-centered
√a Primary mesh

√c √c

[34] Cell-vertex
√b Dual mesh

√c √c

[28] Cell-centered
√b Primary mesh

√c √c

The new scheme Cell-vertex-centered × Primary and dual meshes × √d

[8]1: The first scheme in [8], which only works on the triangular mesh.
Cell-vertex-centered: The scheme has both cell-centered and cell-vertex unknowns.
×: The interpolation or the nonlinear iteration does not required.
a : The interpolation algorithm for the auxiliary unknowns should be positive-preserving.
b : The interpolation algorithm does not need to be positive-preserving.
c : Only the iteration method that does not change the M-matrix structure can be used.
d : General nonlinear iteration method can be used.

Proof. For given T
n+1
ν and K

n+1
c , (3.46) becomes a linear system which can be abbreviated

as
(En+1

c +τA
n+1
c )Tn+1

c =E
n+1
c T

n
c +τF

n+1
c ,

where En+1
c , An+1

c and F
n+1
c are independent of T

n+1
c . In view of the flux discretizations

in (3.37)-(3.39), An+1
c is an M-matrix [35]. Hence, the coefficient matrix En+1

c +τAn+1
c is

a nonsingular M-matrix so that (3.46) has a unique solution. Under the assumption of
Qα ≥ 0, gD

α ≥ 0 and gN
α ≤ 0, one can deduce that F

n+1
c ≥ 0 and then En+1

c T
n
c +F

n+1
c ≥ 0.

Hence we obtain T
n+1
c ≥0. This ends the proof.

Remark 4.1. If (2.1)-(2.3) is a linear problem, due to Lemma 3.1, we can find that the
coefficient matrix of (3.45) is symmetric and positive definite, and then it has a unique
solution. For the nonlinear case, (3.45) is a nonlinear system and the existence of the
cell-vertex unknowns is still open.

Before giving the stability result on quasi-uniform meshes, we first introduce two
discrete function spaces

Vh ={Tv
α,h : Tv

α,h(xν)= T̃α,ν, xν ∈Ω}, Ch ={Tc
α,h : Tc

α,h(xK)=Tα,K, K∈M}.

The discrete L2 and H1 norms on Vh and Ch employed in the analysis are respectively
defined by

‖Tn,v
α,h ‖0,M=


 ∑

xν∈Ω

|K∗
ν |(T̃n

α,ν)
2




1/2

, ‖Tn,c
α,h‖0,M=

(

∑
K∈M

|K|(Tn
α,K)

2

)1/2

,
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|Tn,v
α,h |1,M=

(

∑
K∈M

∑
σ∈EK

(T̃n
α,ν′− T̃n

α,ν)
2

)1/2

=

(

∑
K∈M

‖δT̃
α,n
K ‖2

)1/2

,

and

|Tn,c
α,h |1,M=

(

∑
K∈M

∑
σ∈EK

(δTn
α,σ)

2

)1/2

,

where ‖·‖ denotes the Euclidean vector norm, and

δTn
α,σ =

{
Tn

α,K−Tn
α,L, σ=EK∩EL,

Tn
α,K, σ=EK∩∂Ω.

Furthermore, we introduce the following assumptions:

(H2) Assume the subdivision M is quasi-uniform, i.e., there exists a positive constant α,
independent of the mesh size h, such that

|K|≥αh2, ∀K∈M.

(H3) There exists a positive constant ς, independent of h, such that

∑
K∈M

∑
σ⊂EK

F̃α,n+1
K,σ Tn+1

α,K ≥ς|Tn+1,c
α,h |21,M, ∀Tc

α,h∈Ch.

Remark 4.2. To prove the stability of (3.19)-(3.21), Aα
K in (3.6) should satisfy (4.1). It

should be noted that (H2) is required in the analysis of Lemma 4.1. Although the analysis
is limited to the quasi-uniform condition, numerical results show that the scheme on
meshes which do not satisfy (H2), can also get the desired convergence.

Remark 4.3. (H3) represents that the coercivity of (3.42)-(3.44) holds, which is required to
prove the stability of (3.42)-(3.44). The proof of (H3) is very difficult for the cell-centered
schemes so it is usually treated as an assumption, such as [28, 30]. In Section 5, it is
verified numerically.

After the above assumptions, we give the following lemma.

Lemma 4.1 (Theorem 5 in [38]). Assume that κα(Tα)≥ κ and AK is defined by (3.14). Then,
under the assumptions (H1)-(H2), there exists a positive constant ̺

K
, independent of h, such that

v
T

A
α
Kv≥̺

K
‖v‖2, ∀v∈RnK , ∀K∈M. (4.1)

Finally, we give the following stability result.
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Theorem 4.2 (Stability). Assume that κα(Tα)≥ κ and (2.1)-(2.3) is imposed with a homoge-
nous Dirichlet boundary condition. Then, under assumptions (H1)-(H3), there exists a positive
constant C, dependent only on the final time T= tN , such that

∑
α=e,i,r

c2‖Tn+1,v
α,h ‖2

0,M+2cτ min
K∈M

̺
K

n

∑
k=0

∑
α=e,i,r

|Tk+1,v
α,h |21,M

≤C

(

∑
α=e,i,r

c2‖T0,v
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0

)
, (4.2)

and

∑
α=e,i,r

c2‖Tn+1,c
α,h ‖2

0,M+2cτς
n

∑
k=0

∑
α=e,i,r

|Tk+1,c
α,h |21,M

≤C( ∑
α=e,i,r

c2‖T0,c
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0), (4.3)

where τ≤1/2, c=min{En+1
α,ν /|K∗

ν |, En+1
α,K /|K|, ∀K∈M, xν∈Ω}, n=0,1,··· ,N−1, and ‖·‖0

denotes the standard L2 norm and T0,v
α,h and T0,c

α,h are the discrete functions that coincide with the

initial data Tα(x,0) at the cell centers and vertices.

Proof. Notice that T̃n+1
α,ν = 0 if xν ∈ ∂Ω. Then, multiplying both sides of (3.19) with T̃n+1

e,ν

and summing over all the dual cells, gives

∑
xν∈Ω

En+1
e,ν

T̃n+1
e,ν − T̃n

e,ν

τ
T̃n+1

e,ν + ∑
xν∈Ω

∑
K∈Mν

∑
σ⊂EK∩Eν

(n∗
K,σ ·n∗

ν)Fe,n+1
K,σ∗ T̃n+1

e,ν

= ∑
xν∈Ω

[
Wn+1

ei,ν (T̃n+1
i,ν − T̃n+1

e,ν )+Wn+1
er,ν (T̃n+1

r,ν − T̃n+1
e,ν )

]
T̃n+1

e,ν + ∑
xν∈Ω

|K∗
ν |Qn+1

e,ν T̃n+1
e,ν . (4.4)

For the first term in the left-hand side of (4.4), we have

∑
xν∈Ω

En+1
e,ν

T̃n+1
e,ν − T̃n

e,ν

τ
T̃n+1

e,ν =
1

2τ ∑
xν∈Ω

En+1
e,ν

[
(T̃n+1

e,ν )2−(T̃n
e,ν)

2+(T̃n+1
e,ν − T̃n

e,ν)
2
]

≥ c

2τ
(‖Tn+1,v

e,h ‖2
0,M−‖Tn,v

e,h ‖2
0,M). (4.5)

For the second term in the left-hand side of (4.4), shifting the summation to the primary
cells yields

∑
xν∈Ω

∑
K∈Mν

∑
σ⊂EK∩Eν

(n∗
K,σ ·n∗

ν)Fe,n+1
K,σ∗ T̃n+1

e,ν = ∑
K∈M

∑
σ⊂EK

(T̃n+1
e,ν − T̃n+1

e,ν′ )Fe,n+1
K,σ∗

= ∑
K∈M

(δT
e,n+1
K )TF

e,n+1
K

≥ min
K∈M

̺
K
|Tn+1,v

e,h |21,M, (4.6)
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where
n
∗
K,σ ·n∗

ν T̃n+1
e,ν +n

∗
K,σ ·n∗

ν′ T̃
n+1
e,ν′ =n

∗
K,σ ·n∗

ν′(T̃
n+1
e,ν′ − T̃n+1

e,ν ),

and n
∗
K,σ ·n∗

ν′ = 1 are used in the first equality, and (3.6) and (4.1) are used in the last
inequality. As for the first term in right-hand side of (4.4),

∑
xν∈Ω

[
Wn+1

ei,ν (T̃n+1
i,ν − T̃n+1

e,ν )+Wn+1
er,ν (T̃n+1

r,ν − T̃n+1
e,ν )

]
T̃n+1

e,ν

≤ 1

2 ∑
xν∈Ω

[
Wn+1

ei,ν (T̃n+1
i,ν )2+Wn+1

er,ν (T̃n+1
r,ν )2−(Wn+1

ei,ν +Wn+1
er,ν )(T̃n+1

e,ν )2
]

. (4.7)

For the second term in right-hand side of (4.4), by Young inequality, we have

c ∑
xν∈Ω

|K∗
ν |Qn+1

e,ν T̃n+1
e,ν ≤ c2

2 ∑
xν∈Ω

|K∗
ν |(T̃n+1

e,ν )2+
1

2 ∑
xν∈Ω

|K∗
ν |(Qn+1

e,ν )2

=
c2

2
‖Tn+1,v

e,h ‖2
0,M+

1

2
‖Qn+1

e ‖2
0. (4.8)

Substituting (4.5), (4.6), (4.7) and (4.8) into (4.4), yields

c2

τ
(‖Tn+1,v

e,h ‖2
0,M−‖Tn,v

e,h ‖2
0,M)+2c min

K∈M
̺

K
|Tn+1,v

e,h |21,M

≤c ∑
xν∈Ω

[
Wn+1

ei,ν (T̃n+1
i,ν )2+Wn+1

er,ν (T̃n+1
r,ν )2−(Wn+1

ei,ν +Wn+1
er,ν )(T̃n+1

e,ν )2
]

+c2‖Tn+1,v
e,h ‖2

0,M+‖Qn+1
e ‖2

0, (4.9)

which implies

c2‖Tn+1,v
e,h ‖2

0,M+2cτ min
K∈M

̺
K

n

∑
k=0

|Tk+1,v
e,h |21,M

≤c2‖T0,v
e,h ‖2

0,M+τc
n

∑
k=0

∑
xν∈Ω

[
Wk+1

ei,ν (T̃k+1
i,ν )2+Wk+1

er,ν (T̃
k+1
r,ν )2−(Wk+1

ei,ν +Wk+1
er,ν )(T̃

k+1
e,ν )2

]

+τ
n

∑
k=0

(c2‖Tk+1,v
e,h ‖2

0,M+‖Qk+1
e ‖2

0). (4.10)

Similarly, we have

c2‖Tn+1,v
i,h ‖2

0,M+2cτ min
K∈M

̺
K

n

∑
k=0

|Tk+1,v
i,h |21,M

≤c2‖T0,v
i,h ‖2

0,M+τc
n

∑
k=0

∑
xν∈Ω

Wk+1
ei,ν

[
(T̃k+1

e,ν )2−(T̃k+1
i,ν )2

]

+τ
n

∑
k=0

(c2‖Tk+1,v
i,h ‖2

0,M+‖Qk+1
i ‖2

0), (4.11)
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c2‖Tn+1,v
r,h ‖2

0,M+2cτ min
K∈M

̺
K

n

∑
k=0

|Tk+1,v
r,h |21,M

≤c2‖T0
r,h‖2

0,M+τc
n

∑
k=0

∑
xν∈Ω

Wk+1
er,ν

[
(T̃k+1

e,ν )2−(T̃k+1
r,ν )2

]

+τ
n

∑
k=0

(c2‖Tk+1,v
r,h ‖2

0,M+‖Qk+1
r ‖2

0). (4.12)

It deduces from (4.10), (4.11) and (4.12) that

∑
α=e,i,r

c2‖Tn+1,v
α,h ‖2

0,M+2cτ min
K∈M

̺
K

n

∑
k=0

∑
α=e,i,r

|Tn+1,v
α,h |21,M

≤ ∑
α=e,i,r

c2‖T0,v
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0+τ
n

∑
k=0

∑
α=e,i,r

c2‖Tk+1,v
α,h ‖2

0,M. (4.13)

By the discrete Gronwall inequality, we have

∑
α=e,i,r

c2‖Tk+1,v
α,h ‖2

0,M≤ e2T

(
∑

α=e,i,r

c2‖T0,v
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0

)
, (4.14)

where τ≤ 1
2 . Substituting (4.14) into the right-hand side of (4.13) gives (4.2).

Multiplying both sides of (3.42) with Tn+1
e,K and summing over all the primary cells,

yields

∑
K∈M

En+1
e,K

Tn+1
e,K −Tn

e,K

τ
Tn+1

e,K + ∑
K∈M

∑
σ⊂EK

F̃e,n+1
K,σ Tn+1

e,K

= ∑
K∈M

Wn+1
ei,K (Tn+1

i,K −Tn+1
e,K )Tn+1

e,K

+ ∑
K∈M

Wn+1
er,K (Tn+1

r,K −Tn+1
e,K )Tn+1

e,K + ∑
K∈M

|K|Qn+1
e,K Tn+1

e,K . (4.15)

For the first term in the left-hand side of (4.15), we have

∑
K∈M

En+1
e,K

Tn+1
e,K −Tn

e,K

τ
Tn+1

e,K ≥ c

2τ
(‖Tn+1,c

e,h ‖2
0,M−‖Tn,c

e,h ‖2
0,M). (4.16)

For the second term in the left-hand side of (4.15), by (H3), we have

∑
K∈M

∑
σ⊂EK

F̃e,n+1
K,σ Tn+1

e,K ≥ς|Tn+1,c
e,h |1,M. (4.17)
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As for the right-hand side of (4.15),

c ∑
K∈M

Wn+1
ei,K (Tn+1

i,K −Tn+1
e,K )Tn+1

e,K + ∑
K∈M

Wn+1
er,K (Tn+1

r,K −Tn+1
e,K )Tn+1

e,K +c ∑
K∈M

|K|Qn+1
e,K Tn+1

e,K

≤ c

2 ∑
K∈M

[
Wn+1

ei,K (Tn+1
i,K )2+Wn+1

er,K (Tn+1
r,K )2−(Wn+1

ei,K +Wn+1
er,K )(Tn+1

e,K )2
]

+
c2

2
‖Tn+1,c

e,h ‖2
0,M+

1

2
‖Qn+1

e ‖2
0. (4.18)

Substituting (4.16), (4.17) and (4.18) into (4.15) and summing it from k=0 to k=n, gives

c2‖Tn+1,c
e,h ‖2

0,M+2cτς
n

∑
k=0

|Tk+1,c
e,h |21,M

≤c2‖T0,c
e,h‖2

0,M+τc
n

∑
k=0

∑
K∈M

[
Wk+1

ei,K (Tk+1
i,K )2+Wk+1

er,K (T
k+1
r,K )2−(Wk+1

ei,K +Wk+1
er,K )(T

k+1
e,K )2

]

+τ
n

∑
k=0

[
c2‖Tk+1,c

e,h ‖2
0,M+‖Qk+1

e ‖2
0

]
. (4.19)

Similarly, we have

c2‖Tn+1,c
i,h ‖2

0,M+2cτς
n

∑
k=0

|Tk+1,c
i,h |21,M

≤c2‖T0,c
i,h ‖2

0,M+τc
n

∑
k=0

∑
K∈M

[
Wk+1

ei,K (Tk+1
e,K )2−Wk+1

ei,K (Tk+1
i,K )2

]

+τ
n

∑
k=0

[
c2‖Tk+1,c

i,h ‖2
0,M+‖Qk+1

i ‖2
0

]
, (4.20)

c2‖Tn+1,c
r,h ‖2

0,M+2cτς
n

∑
k=0

|Tk+1,c
r,h |21,M

≤c2‖T0,c
r,h ‖2

0,M+τc
n

∑
k=0

∑
K∈M

[
Wk+1

er,K (T
k+1
e,K )2−Wk+1

er,K (T
k+1
r,K )2

]

+τ
n

∑
k=0

[
c2‖Tk+1,c

r,h ‖2
0,M+‖Qk+1

r ‖2
0

]
. (4.21)

It deduces from (4.19), (4.20) and (4.22) that

∑
α=e,i,r

c2‖Tn+1,c
α,h ‖2

0,M+2cτς
n

∑
k=0

∑
α=e,i,r

|Tk+1,c
α,h |21,M

≤ ∑
α=e,i,r

c2‖T0,c
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0+τ
n

∑
k=0

∑
α=e,i,r

c2‖Tk+1,c
α,h ‖2

0,M. (4.22)
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By the discrete Gronwall inequality, we have

∑
α=e,i,r

c2‖Tn+1,c
α,h ‖2

0,M≤ e2T

(
∑

α=e,i,r

c2‖T0,c
α,h‖2

0,M+τ
n

∑
k=0

∑
α=e,i,r

‖Qk+1
α ‖2

0

)
, (4.23)

where τ≤ 1
2 . Substituting (4.23) into the right-hand side of (4.22), gives (4.3).

5 Numerical results

Define the relative discrete error of the solutions and fluxes as follows:

εT
2 =

(

∑
K∈M

∑
α=e,i,r

|K|(Tα(xK)−Tα,K)
2

)1/2/
(

∑
K∈M

∑
α=e,i,r

|K|Tα(xK)
2

)1/2

,

and

εF
2 =

(

∑
σ∈E

∑
α=e,i,r

Sσ(F̃α
K,σ−F α

K,σ)
2

)1/2/
(

∑
σ∈E

∑
α=e,i,r

Sσ(F α
K,σ)

2

)1/2

,

where Sσ is an area associated with the primary edge σ (for example, is equal to the
area of the quadrilateral xKxνxLxν′ as shown in Fig. 2 for interior edge or the area of
the triangular xKxνxν′ for boundary edge), and F α

K,σ is defined in (3.25). To investigate
numerically the reliability of (H3), define

ς
h
= min

α=e,i,r

∑K∈M∑σ⊂EK
F̃α,n+1

K,σ Tn+1
α,K

|Tn+1,c
α,h |21,M

.

If ς
h

stays a positive constant, independent of h, then it is meaningful for us to assume
(H3).

All the examples are performed in double precision, BCGSTAB is used to solve the
linear systems with the stopping tolerance 10−15, while the possibly nonlinear iterative
method, such as the Picard method or the Newton method, is carried out with the stop-
ping tolerance 10−6. Throughout this section, the notations below will be used in the
numerical examples.

• umin: the minimal value of the approximate solution;

• umax: the maximal value of the approximate solution;

• iter
P

: the average value of the iteration number by the Picard method;

• iter
N

: the average value of the iteration number by the Newton method.
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5.1 Convergence

Since the 3-T radiation diffusion problem is relatively complex, it is extremely difficult
to theoretically analyze the convergent accuracy of the scheme. Therefore, we can only
discuss the approximation accuracy from the view of the numerical experiments. In this
part, we investigate the convergence of the efficient positivity-preserving scheme (EPPS)
by some radiation diffusion problems having non-zero source terms and the analytic
solutions. To highlight the computational efficiency of the present scheme, we also test
the cell-vertex positivity-preserving scheme (VPPS) in [34] for a comparison.

Example 5.1 (Linear diffusion coefficients). Here we consider a linear radiation diffusion
problem on Ω=(0,1)2 with full Dirichlet boundary condition. Let the parameters in the
3-T radiation diffusion model (2.1)-(2.3) be specified by ρ=1, ωei=ωer=1, cvα=1, κα=1.
The associated analytical solutions are

Tα= et





(x2+1)(y2+1), α= e,

(2x2+1)(y2+1), α= i,

(2x2+1)(2y2+1), α= r.

Here we remark that the source terms can be computed correspondingly. We choose the
final time t = 0.5 and the time stepsize τ = h2 where h is the mesh size. Four types of
meshes are used in this example, see Fig. 3.

Numerical results of Te, Ti and Tr on the four meshes are graphically depicted in Fig. 4
as the log-log plots of the discrete errors versus the characteristic mesh size h. The scheme
is approximately second-order accurate while the flux error achieves first-order accurate.
The number of the nonlinear iterations of VPPS and the CPU cost of the two schemes are
respectively listed in Table 2. As commented in Remark 3.3, the present scheme EPPS
does not require nonlinear iteration for the linear problems and only need to solve two
systems of linear equations at each time step. Hence, it consumes considerably less time
than VPPS, especially on the large deformed meshes, such as the Kershaw mesh and the
distorted mesh. Numerical results of ς

h
on all types of meshes are listed in Table 3, which

Table 2: Example 5.1: The number of the nonlinear iterations and the CPU time.

Mesh
level

Random mesh Kershaw mesh Distorted mesh Polygonal mesh

VPPS EPPS VPPS EPPS VPPS EPPS VPPS EPPS

1 9.25 - 22 - 53.38 - 6.80 -

2 10 - 27.75 - 52.85 - 7 -

3 10 - 34.71 - 49.98 - 7 -

4 9.99 - 38.65 - 44.87 - 7 -

5 9.25 - 25.98 - 39.97 - 8 -

CPU(s) 13739.13 2069.40 5042.33 257.61 5758.55 143.98 40719.19 9875.25
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(a) Random mesh (1.83E-2, 2.63E-1) (b) Kershaw mesh (5.00E-2, 6.62E-1)

(c) Distorted mesh (6.29E-2, 3.10E-1) (d) Polygonal mesh (1.52E-2, 2.30E-1)

Figure 3: Example 5.1: Four types of meshes. Each mesh is used with five successive mesh levels, and the
range of associated characteristic mesh size hi (i=1,··· ,5) is shown in the bracket as (h1,h5) in the caption of
each mesh.

Table 3: Example 5.1: The values of ς
h
.

Mesh level Random mesh Kershaw mesh Distorted mesh Polygonal mesh

1 0.54 0.26 0.56 0.24

2 0.51 0.23 0.23 0.25

3 0.50 0.21 0.19 0.24

4 0.50 0.21 0.18 0.24

5 0.50 0.21 0.18 0.24

show that ς
h

tends to a positive constant, independent of h, verifying the reliability of
(H3).

Example 5.2 (Smooth nonlinear diffusion coefficients). Here we consider a radiation dif-
fusion problem with nonlinear diffusion coefficients. The energy exchange coefficients
and the diffusion coefficients are ωei=ωer =Te and κα=1+T2

α . Other parameters and the
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Figure 4: Example 5.1: Numerical errors of the temperatures at t=0.5.
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Table 4: Example 5.2: Numerical results of Te at t=0.5.

Mesh
level

Random mesh Kershaw mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 6.49E-3 – 3.39E-2 – 1.92E-2 – 1.62E-1 –

2 1.75E-3 2.07 1.50E-2 1.28 5.85E-3 2.02 8.13E-2 1.17

3 4.31E-4 2.06 5.99E-3 1.35 1.50E-3 2.11 2.61E-2 1.77

4 1.19E-4 1.93 3.59E-3 0.77 3.83E-4 2.04 7.36E-2 1.89

5 2.91E-5 2.07 1.69E-3 1.10 9.65E-5 2.02 1.95E-3 1.95

Mesh
level

Distorted mesh Polygonal mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 3.85E-3 – 3.64E-2 – 5.96E-3 – 6.49E-2 –

2 1.03E-3 1.93 1.14E-2 1.70 1.98E-3 1.67 1.98E-2 1.80

3 4.63E-4 1.97 5.35E-3 1.87 5.74E-4 1.81 6.98E-3 1.53

4 2.62E-4 1.99 3.08E-3 1.93 1.52E-4 1.93 2.60E-3 1.43

5 1.68E-4 2.00 1.99E-3 1.95 3.94E-5 1.95 9.45E-4 1.46

Table 5: Example 5.2: Numerical results of Ti at t=0.5.

Mesh
level

Random mesh Kershaw mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 1.15E-2 – 5.77E-2 – 2.71E-2 – 1.82E-1 –

2 3.10E-3 2.06 2.14E-2 1.56 8.64E-3 1.94 8.44E-2 1.31

3 7.55E-4 2.08 8.14E-3 1.42 2.20E-3 2.12 2.75E-2 1.74

4 2.05E-4 1.95 4.48E-3 0.89 5.58E-4 2.05 7.77E-3 1.89

5 4.98E-5 2.08 2.07E-3 1.13 1.40E-4 2.03 2.06E-3 1.95

Mesh
level

Distorted mesh Polygonal mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 6.05E-3 – 3.87E-2 – 1.05E-2 – 8.39E-2 –

2 1.60E-3 1.95 1.17E-2 1.75 3.44E-3 1.70 2.52E-2 1.83

3 7.21E-4 1.98 5.46E-3 1.89 9.83E-4 1.83 8.72E-3 1.55

4 4.08E-4 1.99 3.14E-3 1.94 2.59E-4 1.93 3.23E-3 1.44

5 2.61E-4 2.00 2.03E-3 1.96 6.68E-5 1.95 1.17E-3 1.46

exact solutions are the same as that in the previous example. The source terms can be
computed correspondingly.

Numerical results on the four types of meshes (Fig. 3) are listed in Tables 4-6. One
can see that the scheme gets the second-order (resp. first-order) accuracy of the solution
(resp. flux) error. The number of the nonlinear iterations by the present scheme EPPS
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Table 6: Example 5.2: Numerical results of Tr at t=0.5.

Mesh
level

Random mesh Kershaw mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 1.43E-2 – 5.76E-2 – 4.23E-2 – 2.35E-1 –

2 4.10E-3 1.97 2.27E-2 1.47 1.36E-2 1.93 1.12E-1 1.27

3 1.03E-3 2.03 8.34E-3 1.47 3.52E-3 2.10 3.76E-2 1.69

4 2.79E-4 1.96 5.02E-3 0.76 8.96E-4 2.05 1.07E-2 1.88

5 6.67E-5 2.09 2.38E-3 1.09 2.26E-4 2.02 2.84E-3 1.95

Mesh
level

Distorted mesh Polygonal mesh

εT
2 order εF

2 order εT
2 order εF

2 order

1 9.70E-3 – 5.19E-2 – 1.41E-2 – 1.05E-1 –

2 2.62E-3 1.92 1.60E-2 1.72 4.40E-3 1.76 2.99E-2 1.90

3 1.18E-3 1.97 7.51E-3 1.87 1.24E-4 1.85 1.03E-2 1.55

4 6.69E-4 1.99 4.32E-3 1.93 3.24E-4 1.94 3.89E-3 1.41

5 4.29E-4 1.99 2.80E-3 1.95 8.36E-5 1.96 1.44E-3 1.44

Table 7: Example 5.2: The number of the nonlinear iterations and the CPU time by EPPS with τ=h2.

Mesh
level

Random mesh Kershaw mesh Distorted mesh Polygonal mesh

iter
P

iter
N

iter
P

iter
N

iter
P

iter
N

iter
P

iter
N

1 12.38 3.88 11.50 5.00 11.67 3.83 12.20 3.90

2 11.62 3.00 12.00 4.75 10.38 3.00 11.22 3.00

3 9.55 3.00 10.93 3.93 9.07 3.00 8.74 3.00

4 7.10 3.00 8.73 3.00 8.19 3.00 6.29 2.00

5 5.00 2.00 6.59 3.00 7.43 3.00 4.33 2.00

CPU(s) 7743.05 3827.45 1211.03 615.11 650.09 276.25 42803.19 20515.19

with the Picard method and the Newton method and CPU time are listed in Table 7,
which implies that the Newton method can reduce the number of iterations and save
more than half of the time consumed. Since the cell-vertex scheme VPPS with Picard
method does not converge with τ = h2 on the random mesh, here we choose the time
stepsize τ = 5×10−4. The number of the nonlinear iterations by EPPS with the Newton
method and VPPS with the Picard method, and the CPU time are presented in Table 8.
One can see that the computational efficiency of the proposed scheme EPPS is better than
that of the scheme VPPS, especially in the large deformed grids. Moreover, the values of
ς

h
are provided in Table 9 to support (H3).
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Table 8: Example 5.2: The number of the nonlinear iterations and the CPU time by EPPS and VPPS with
τ=5×10−4.

Mesh
level

Random mesh Kershaw mesh Distorted mesh Polygonal mesh

EPPS VPPS EPPS VPPS EPPS VPPS EPPS VPPS

1 2 8.80 2 16.95 2 40.96 2 8.47

2 2 10.40 2 21.90 2 50.82 2 9.21

3 2 10.55 2 29.91 2 58.03 2 8.92

4 2 11.59 2 40.73 2 63.48 2 9.09

5 2 11.42 2 49.69 2 67.76 2 9.41

CPU(s) 3182.19 11408.84 2985.92 51148.30 2489.41 77682.91 11207.06 46408.41

Table 9: Example 5.2: The values of ς
h
.

Mesh level Random mesh Kershaw mesh Distorted mesh Polygonal mesh

1 3.42 1.46 1.18 1.63

2 3.42 1.47 1.19 1.63

3 3.43 1.48 1.20 1.63

4 3.43 1.48 1.21 1.64

5 3.43 1.48 1.21 1.64

Example 5.3. (Discontinuous diffusion coefficients) This example investigates a radiation
diffusion system with discontinuous diffusion coefficients on Ω = Ω1∪Ω2 where Ω1 =
(0,0.5)×(0,1) and Ω2=(0.5,1)×(0,1). Let the diffusion coefficients be

κe =

{
5Te, in Ω1,

Te, in Ω2,
κi =

{
5Ti, in Ω1,

Ti, in Ω2,
κr =

{
5Tr , in Ω1,

Tr, in Ω2.

The exact solutions are

Te(x,y,t)=

{
t(sinπx+1)sinπy+1, in Ω1,

t(sin5πx+1)sinπy+1, in Ω2,

Ti(x,y,t)=

{
t(sinπx+1)(sin2πy+1)+1, in Ω1,

t(sin5πx+1)(sin2πy+1)+1, in Ω2,

Tr(x,y,t)=

{
t(sinπx+1)(sin3πy+1)+1, in Ω1,

t(sin5πx+1)(sin3πy+1)+1, in Ω2.

Other parameters are chosen as ρ=1, cvα=1, ωei=ωer =1.
Here we investigate the convergence on the triangular mesh and the locally refined

mesh, see Fig. 5. The final time is t= 0.1 and the time stepsize is the same as that in the
previous example.

Numerical errors of the example are graphically depicted in Fig. 6. It implies that our
scheme EPPS achieves the desired order of convergence for the discontinuous problem.
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(a) Triangular mesh (1.56E-2, 2.50E-1) (b) Locally refined mesh (2.21E-2, 3.54E-1)

Figure 5: Example 5.3: Two types of meshes. Each mesh is used with five successive mesh levels, and the range
of associated characteristic mesh size hi (i= 1,··· ,5) is shown in the bracket as (h1,h5) in the caption of each
mesh.
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Figure 6: Example 5.3: Numerical errors of the temperatures on the two types of meshes.
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5.2 Applications

This subsection simulates two typical models of the 3-T radiation diffusion equations
to verify the positivity-preserving property and high efficiency of the present scheme.
Denote the first scheme proposed in [8] by FVEM-3T. In this subsection, the schemes
VPPS and FVEM-3T are also implemented and the corresponding results are presented
whenever there is a need for comparison.

Example 5.4 (Positivity of the discrete solutions). This example simulates the following
3-T problem to verify the positivity-preserving property of our scheme.

The calculation domain consists of two parts: Ω = Ω1∪Ω2, where the subdomains
Ω1=(0,250)×(0,300) and Ω2=(250,300)×(0,300) are filled with two different materials
A and B. The initial conditions are (hα)A =(hα)B =3×10−4. The densities are ρA =0.05,
ρB=1.0. The diffusion coefficients are (κe)A=(κe)B=10, (κi)A=(κi)B=10, and (κr)A=100,
(κe)B =10, respectively. The boundary conditions are specified as follows

−κe
∂Te

∂n
|∂Ω =−κi

∂Ti

∂n
|∂Ω=0, Tr|y=0=100,

∂Tr

∂n
|∂Ω\{y=0}=0.

Let ωei = 10/ρ, ωer = 100/ρ, and cvα=1, and there is no source. The time stepsize τ is
chosen to be 10−3. The random triangular and quadrilateral meshes (see Fig. 7) are used
in this example.

The contour plots of the photon temperature at time t=5 are shown in Fig. 8. The max-
imum and minimum temperatures of the cell-vertex unknowns on the predictor phase
and cell-centered unknowns on the corrector phase are listed in Table 10-11. One can
see that the cell-centered unknowns are positive while the cell-vertex unknowns are not,
which is consistent with the positivity-preserving analysis of our scheme.
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(a) Random triangular mesh
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(b) Random quadrilateral mesh

Figure 7: Example 5.4: Two types of meshes.
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Figure 8: Example 5.4: The contour plots of the photon temperature on the random triangular mesh (left) and
quadrilateral mesh (right) at time t=5.

Table 10: Example 5.4: The maximum and minimum values of the numerical solutions on the random triangular
mesh at t=5.

Unknown
Electron Ion Photon

umin umax umin umax umin umax

cell-vertex −1.853 99.974 −1.853 99.842 −1.853 92.877

cell-centered 2.984E-6 97.601 2.982E-6 97.580 2.984E-6 97.603

Table 11: Example 5.4: The maximum and minimum values of the numerical solutions on the random quadri-
lateral mesh at t=5.

Unknown
Electron Ion Photon

umin umax umin umax umin umax

cell-vertex −1.476 99.969 −1.476 99.818 −1.476 92.874

cell-centered 3.905E-7 95.961 3.905E-7 95.955 3.905E-7 95.962

Table 12: Example 5.4: The number of the nonlinear iterations and the CPU time.

Scheme
Triangular Quadrilateral

iter
P

CPU(s) iter
P

CPU(s)

EPPS - 967.063 - 502.266

VPPS 2.199 1071.844 2.227 956.656

The average number of the nonlinear iterations for VPPS and the used time of the
present scheme EPPS and VPPS are presented in Table 12, which shows that the present
scheme is more efficient than the scheme VPPS. Since two systems need to be solved at
each time step, the used time of EPPS does not take much less time than that of VPPS.
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Example 5.5 (Typical model of laser-driven implosion ICF). Here we simulate the typical
model of the laser-driven implosion of the inertial confinement fusion in [21]. As shown
in Fig. 9, the computational region Ω with boundary ∂Ω=Γ1∪Γ2 is a half circle in the 2D
Cartesian coordinate plane. The circle center is at the coordinate origin, and the diameter
is overlapped with the x-axis. It is divided into three subregions Ωi, i=1,2,3. The inner-
most, middle and outside subdomains cover with 0< r<90, 90< r<95 and 95< r<132
respectively, and are filled with deuterium gas (DT), glass (SiO2) and plastic foam (CH),
respectively. The values of all parameters in (2.1)-(2.3) can be found in [34] and are not
elaborated here. The source term Qα is zero. The boundary and initial conditions are





−κe
∂Te

∂n
=−κi

∂Ti

∂n
=0, Tr =2, on Γ1,

−κα
∂Tα

∂n
=0, on Γ2,

and
Tα(x,0)=3×10−4,

respectively.
The time stepsize is taken as τ = 5×10−4. Four types of meshes in Fig. 10 are used.

They are the unstructured triangular mesh, quadrilateral mesh, polygonal mesh and non-
matching mesh.

To test the energy conservation in the numerical simulations, we compute the relative
energy conservative error [25] by

∣∣∣∣
En

enter−(En
own−E0

own)

En
enter+E0

own

∣∣∣∣,

where En
enter denotes the total radiation energy importing from the Dirichlet boundary,

and En
own is the system energy at time tn computed by

En
own = ∑

K∈M
|K|
(

cn
ve,KTn

e,K+cn
vi,KTn

i,K+cn
vr,K(T

n
r,K)

4
)

.

Γ2

Ω1

Ω3

Ω2

Γ1

Figure 9: Example 5.5: Computational domain.
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Figure 10: Example 5.5: Four types of meshes.

Note that the computation of En
enter requires the discrete flux across the Dirichlet bound-

ary. Here we first reconstruct the value of ∇Tα. By the Green formula and trapezoidal
rule, we have

∫

K
∇Tαdx= ∑

σ∈EK

∫

σ
TαnK,σds≈ ∑

σ∈EK

1

2
|σ|(Tα,ν+Tα,ν′)nK,σ,

where Tα,ν and Tα,ν′ are the approximations of Tα at the endpoints of σ, nK,σ is the unit
outward normal vector to the edge σ. Hence, we have

∇Tα,K = ∑
σ∈EK

|σ|
2|K| (Tα,ν+Tα,ν′)nK,σ.

Assume that σ∈EK∩ΓD, then we results in the discrete flux across σ by

−
∫

σ
κα∇Tα ·nK,σ ≈−|σ|κα,K∇Tα,K ·nK,σ.

Numerical temperatures of the electron, ion and photon at {x≥ 0, y= 0}, t= 0.5 are
shown in Fig. 11. The contour plots of the electron, ion and photon temperatures are
depicted in Fig. 12 at the specified time, t= 0.5, 5, and 50 respectively on unstructured
triangular mesh. The contour plots on other three meshes are similar so that we do not
display to avoid redundancy. The electron, ion and photon temperatures are positive
at each specified time, which verifies the positivity-preserving property of the present



34 S. Su, H. Tang and J. Wu / Commun. Comput. Phys., x (20xx), pp. 1-38

√

x2 + y2

0 20 40 60 80 100 120 140

E
le

ct
ro

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
t=0.5

Unstructured triangular mesh
Quadrilateral mesh
Polygonal mesh
Non-matching mesh

√

x2 + y2

0 20 40 60 80 100 120 140
Io

n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
t=0.5

Unstructured triangular mesh
Quadrilateral mesh
Polygonal mesh
Non-matching mesh

√

x2 + y2

0 20 40 60 80 100 120 140

P
ho

to
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
t=0.5

Unstructured triangular mesh
Quadrilateral mesh
Polygonal mesh
Non-matching mesh

Figure 11: Example 5.5: The temperatures of the electron (left), ion (middle) and photon (right) at {x≥0,y=0},
t=0.5.
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Figure 12: Example 5.5: The temperature contours of the electron (top), ion (middle) and photon (bottom)
on the unstructured triangular mesh at t=0.5 (left), 5 (middle), 50 (right).
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Table 13: Example 5.5: Energy conservative errors (%) on the unstructured triangular mesh.

Scheme t=0.1 t=1 t=5 t=10 t=25 t=50

VPPS [34] 10.91 5.52 2.11 1.30 0.76 0.24

FVEM-3T [8] 10.91 5.52 2.10 1.28 0.70 0.23

EPPS 10.88 5.52 2.11 1.30 0.76 0.24

Table 14: Example 5.5: Energy conservative errors (%) on the quadrilateral mesh with four levels.

Mesh level t=0.1 t=1 t=5 t=10 t=20 t=30 t=40 t=50

1 65.17 23.21 11.21 8.31 6.97 6.05 5.44 5.01

2 16.73 9.25 5.06 3.93 3.27 2.91 2.66 2.49

3 7.26 4.31 2.44 1.92 1.60 1.44 1.33 1.25

4 3.35 2.08 1.20 0.94 0.79 0.72 0.66 0.62

scheme. Moreover, the photon temperature is higher than those of the electron and ion at
each specified time and the temperature contours are all symmetric about the line x=0.

The energy conservative errors of the schemes VPPS, FVEM-3T and EPPS at various
specified times are listed in Table 13. Here we remark that the scheme FVEM-3T can
only work on the unstructured triangular mesh. We find that those schemes possess the
similar results. The energy conservative errors on the quadrilateral meshes are shown in
Table 14. One can see that the energy conservative error becomes nearly half as the mesh
is uniformly refined, and it is convergent of order one. This also confirms the correctness
and robustness of our new scheme.

6 Conclusion

In this paper, an efficient and positivity-preserving finite volume scheme is proposed
for the nonequilibrium radiation diffusion problems with three-temperature on general
polygonal meshes with star-shaped cells. The scheme is formed as a predictor-corrector
algorithm. The predictor phase determines the cell-vertex solutions on the dual mesh
independently, while the corrector phase obtains the cell-centered solutions on the pri-
mary mesh. The L2- and H1-stability of the two phases are analyzed on quasi-uniform
meshes, and the positivity, existence and uniqueness of the cell-centered unknowns on
the corrector phase are proved. Since only two systems of linear equations are solved
for the linear problems, and the general nonlinear iterative method can be used for the
nonlinear problems, the computational efficiency of this scheme is higher than that of
the existing nonlinear positivity-preserving finite volume schemes. In comparison with
the scheme in [33], the primary flux approximation has a fixed stencil and the scheme
does not need the additional step to keep the nonnegativity of the cell-vertex unknowns,
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which makes our scheme more flexible and easy for implementation. Numerical results
show that the present scheme achieves second-order accuracy, generates the nonnegative
discrete solutions at the cell centers of arbitrary star-shaped polygonal meshes. Moreover,
the computational costs (the CPU time and the number of the nonlinear iterations) shows
the high efficiency of the scheme. These results indicate that our positivity-preserving
scheme is practical and attractive for solving the nonequilibrium 3-T radiation diffusion
equations on the polygonal meshes. In the future, we will focus on the extension of the
scheme to the 3-T radiation hydrodynamical equations.
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