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Abstract. In present paper, mesh adaptation is applied for curing the pathological
behaviors of the enhanced time-accurate upwind scheme (Loh & Jorgenson, AIAAJ
2016). In the original ETAU (enhanced time-accurate upwind) scheme, a multi-
dimensional dissipation model is required to cure the pathological behaviors. The
multi-dimensional dissipation model will increase the global dissipation level reduc-
ing numerical resolution. In present work, the metric-based mesh adaptation strategy
provides an alternative way to cure the pathological behaviors of the shock captur-
ing. The Hessian matrix of flow variables is applied to construct the metric, which
represents the curvature of the physical solution. The adapting operation can well re-
fine the anisotropic meshes at the location with large gradients. The numerical results
show that the adaptation of mesh provides a possible way to cure the pathological
behaviors of upwind schemes.
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1 Introduction

For finite volume methods, upwind schemes are very popular due to their robustness and
geometric flexibility. Following Godunov’s idea [1], the Godunov type upwind schemes
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[2–4] applied a Riemann solver for flux calculations. However, they contain some cases
of pathological behaviors, including the carbuncle phenomenon, the kinked Mach stem,
the expansion shock and the numerical oscillation across a slow moving shock etc. [5–7].

The most renowned pathological behavior is the carbuncle phenomenon. It is firstly
observed by Peery and Imlay [6]. The carbuncle phenomenon refers unphysical solutions
at the stagnation region for computation of a supersonic flow over a blunt body. Many
efforts have being made to study the origin of the carbuncle phenomenon. Through lin-
ear analysis, Sanders et al. [8] suggested the anomaly is the result of inadequate cross
flow dissipation. Robinet et al. [9] pointed out that the carbuncle phenomenon is linked
to the intrinsic instability of the Euler equations. By linear stability analysis, Gressier et
al. [10] suggested the odd-even decoupling contributes the failures in some situations.
By matrix stability analysis, Dumbser et al. [11] confirmed the problem of the odd-even
decoupling. According to Xu et al. [12, 13], the dissipative mechanism of Godnov-type
schemes is mainly from the averaging stage. In the direction parallel to the normal shock,
the velocity is almost the same for two neighboring mesh cells, the numerical dissipation
introduced in the averaging process diminishes. Without enough dissipation, the per-
turbation of pressure field will feed the density field, which is likely to induce shock
instability. Kemm [14] also identified that low numerical viscosity on shear waves is the
source of carbuncle. It is generally agreed that the insufficient dissipation is responsible
for the pathological behaviors. Various methods have been proposed to cure the patho-
logical behaviors. For instance, Quirk [7] used a more dissipative HLLE scheme near the
shock. Lin [15] proposed a cure of Roe’s scheme by reducing second-order accuracy to
first-order accuracy inside the shock layer. Kim et al. [16] proposed a function to control
the damping characteristic of Roe’s scheme. Loh and Jorgenson [17] proposed a multi-
dimensional dissipation model to systematic cure the pathological behaviors. However,
these approaches will increase the dissipation level, thus reducing the numerical reso-
lution, increasing the shock thickness or smearing some features of the flow field. Re-
cently, Fleischmann et al. [18, 19] proposed a novel approach that cures the carbuncle
phenomenon by reducing numerical dissipation instead of increasing it. They suggested
that the inadequate scaling of the acoustic dissipation in the low Mach number limit
causes the instability. By modifying the eigenvalue calculation in the Roe approximation,
the approach can prevent the grid-aligned shock instability.

On the other hand, according to Quirk’s observation [7], the alignment of the grid line
to the shock is an essential condition for triggering the pathological behaviors. Mean-
while, Pandolfi and D’Ambrosio [20] proposed that the grid aspect ratio has significant
influence to the carbuncle phenomenon. The elongated elements along the normal of
the shock promote the instabilities, whereas elements stretched along the tangent to the
shock have a damping effect. Recently, Rodionov [21] suggested that the grid alignment
with the flow lines at the shock front is critical for the activation of the physical anomaly.
He also pointed out that the numerical instability is sensitive to the size and shape of the
grid cells.

These works inspired us to cure the pathological behaviors from the aspect of mesh
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adaptation. In computational aerodynamics, mesh adaptation is an effective way for cap-
turing complicate physical features. Numerous papers have been published dealing with
mesh adaptation for numerical simulations. [22–27] The unstructured and anisotropic
mesh adaptation method is very popular and effective, which is realized by mesh opera-
tion based on a predefined manner.

The metric-based mesh adaptation was introduced in the pioneering works of Diaz
and Hecht [25, 26] in 1997. It is able to transform any unstructured isotropic mesh gen-
erator into an anisotropic one. This is done by computing the distance in a Riemannian
metric space instead of the classical Euclidean one. Then, the adaptive mesh generator
creates a unit-mesh in the Riemannian metric space. There are many beneficial impacts
of the mesh adaptation operation. It can not only reduce the amount of required mesh el-
ements, but also better resolve the multi-scale features of flow fields. Especially, the mesh
adaptation strategy has a natural advantage of shock capture, because most adaptation
algorithms are based on the gradient of flow variables. The shock resolution can be sig-
nificantly improved by mesh refinement across the interface with sharp jump of physical
variables. Furthermore, the anisotropic property across the shock layer of the anisotropic
mesh can damp the shock instability.

Thus, it is possible to use the anisotropic mesh adaptation strategy to better resolve
the shock and cure the pathological behaviors of upwind finite volume methods on un-
structured grids. In present work, a metric-based mesh adaptation algorithm is applied
to cure the pathological behaviors of the original ETAU scheme. The metric is constructed
based on the Hessian matrix of the flow variable. It can well refine the mesh resolution at
the location with large gradients, thus shocks. Meanwhile, the anisotropic property of the
cells in the shock layer has a damping effect of the numerical instability. The basic finite
volume solver applied is the enhanced time-accurate upwind scheme (ETAU) [28, 29].

2 Fundamentals of the enhanced time-accurate upwind scheme

The basic flow solver for the compressible Euler and Navier-Stokes equations is the en-
hanced time-accurate upwind scheme [29, 30]. The ETAU scheme has been proven to be
very robust for a wide range of compressible flows, which is second order in space and
time [28, 29].

2.1 Conservation form of the compressible Euler and Navier-Stokes
equations

The two dimensional Euler and Navier-Stokes equations can be written in the following
vector form as

Ut+Fx+Gy=0, (2.1)
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where x, y and t are the streamwise, transverse and time coordinates, respectively. Gen-
erally, the flux vectors F and G are split into inviscid and viscous parts:

F=Fi−Fv, G=Gi−Gv.

The conservative flow variable vector U and the inviscid flux vectors Fi and Gi are given
in non-dimensional forms as

U=









U1

U2

U3

U4









=









ρ
ρu
ρv
ρe









, Fi=









ρu
ρu2+p

ρuv
ρuH









, Gi=









ρv
ρuv

ρv2+p
ρvH









. (2.2)

Respectively, ρ, u, v, and p are the density, two velocity components, and static pressure.
Let γ be the constant specific heat ratio. The total energy can be expressed as

e=
p

ρ(γ−1)
+

1

2
(u2+v2),

and the total enthalpy is H= p/ρ+e.
The non-dimensional viscous flux vectors Fv and Gv are written in conservation forms

as

Fv =











0

µ(2ux− 2
3∇·V)

µ(vx+uy)

µ[(2uux+(uy+vx)v− 2
3(∇·V)u+ γ

Pr
∂

∂x (
U4
U1

− u2+v2

2 )]











(2.3)

and

Gv=











0

µ(vx+uy)

µ(2vy− 2
3∇·V)

µ[(2vvx+(uy+vx)u− 2
3(∇·V)v+ γ

Pr
∂

∂y(
U4
U1

− u2+v2

2 )]











, (2.4)

where ux, uy, vy and vy are the flow velocity gradients with Pr being the Prandtl number.
µ=1/Re is the dynamic viscosity coefficient, where Re is the Reynolds number; and the
velocity divergence is ∇·V = ux+vy. For air at standard condition, there is γ= 1.4; and
the Prandtl number is Pr=0.72.

For finite volume scheme, the Gauss divergence theorem is applied to the control
volume. As depicted in Fig. 1, ∆ABC is the control volume, in a typical 2D unstructured
triangular grid. The unstructured grid is a natural environment for the incorporation of
mesh adaptation algorithms. The quadrature of surface integrals leads to the discretized
form of the ETAU scheme:

Un+1=Un− ∆t

∆s

3

∑
k=1

[Fn+1/2
k (nx)k+Gn+1/2

k (ny)k
]∆lk , (2.5)
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Figure 1: The illustration of (a) the control volume in a typical unstructured triangular grid with left and right
state of each edge; (b) M,N, P are the cell edge centers.

where Un and Un+1 are the cell average values at current and next time level, respectively.
∆t is the time step. The flow variables are stored at the triangle cell centers. The area of
control volume denotes as ∆s and the length of each edge is ∆lk. Meanwhile, (nx,ny)k is
the outgoing normal vector of each edge.

2.2 Variable reconstruction and the multidimensional limiting

The cell average-flow variables are reconstructed into second-order polynomials within
the control volume. The evaluation of spatial gradients and time derivatives is a criti-
cal step. As shown in Fig. 1, the flow data U is stored at current cell center O and its
three neighboring cell centers D, E, and F. Let u be a component of U. By simple finite
difference, three linear equations for the gradients give as:

(xD−xO)ux+(yD−yO)uy=uD−uO,

(xE−xO)ux+(yE−yO)uy=uE−uO,

(xF−xO)ux+(yF−yO)uy=uF−uO.

(2.6)

The subscripts O, D, E, and F denote the corresponding cell centers. Any combination of
two of these equations yields a set of spatial gradients for u, namely (ui

x,ui
y) (i= 1,2,3).

Their moduli gives as

mi =

√

[u
(i)
x ]

2
+[u

(i)
y ]

2
, i=1,2,3. (2.7)

Two limiters are recommended, thus the minmod limiter and the extended van Albada
limiter [31]. When the minmod limiter is applied, the gradients (ui

x,ui
y) are corresponding

to mi = min(m1,m2,m3). Generally, the minmod limiter can work well. For cases with
strong discontinuity, the van Albada limiter is employed, which is a weighted averaging.
Three weights are defined as

ω1=(m2m3)
α, ω2=(m1m3)

α, ω3=(m1m2)
α. (2.8)
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Then, the limited gradients are evaluated as

ux =
ω1u

(1)
x +ω2u

(2)
x +ω3u

(3)
x

ω1+ω2+ω3
, uy=

ω1u
(1)
y +ω2u

(2)
y +ω3u

(3)
y

ω1+ω2+ω3
. (2.9)

The free parameter α≥ 0 provides some numerical dissipation. A small α (e.g. α= 0.5)
usually gives less dissipation. For extreme situations with strong discontinuity, like the
presence of shocks, a large value of α (e.g. α=2.0) is needed.

After the spatial gradients Un
x , Un

y are obtained, the Cauchy-Kowalewski concept is
used to calculate the time derivative Ut, by using the governing equations to represent the
time derivative by the spatial derivatives. This idea was first used in the Lax-Wendroff
scheme and also employed by the NT [32] and CE/SE schemes [33]. Following this con-
cept, the time derivative is given as

Un
t =−Fn

x −Gn
y . (2.10)

As Reynolds number Re is usually high (or viscosity µ is small), the fluxes F and G can
be well approximated by their inviscid portions:

Un
t =−

(

∂Fi

∂U

)n

Un
x −

(

∂Gi

∂U

)n

Un
y . (2.11)

After the spatial gradients and time derivatives have been obtained, L(left) and R(right)
states of each edges of the control volume can be given. Then, the inviscid fluxes are cal-
culated by a Riemann Solver [2]. The Riemann solver can compromise the two different
states across the cell interface, with the values of the L(left) and R(right) states. On the
other hand, the viscous fluxes are calculated by the Right-state.

Note that, when the Gauss divergence theorem is applied, only the flow variables
normal to the interface are considered. The components parallel to the cell interface are
ignored with no control. Meanwhile, when the cell interface flux is calculated with a
Riemann solver, only the flow variables normal to the interface are considered. Their
components parallel to the interface are completely ignored with no control or damping
(see e.g. [17]). This is the reason why the pathological behaviors often happen in upwind
schemes. For example, assume a cell interface lies along with the shock, then the numer-
ical solution is vulnerable to any disturbance/instabilities in the direction aligned with
the shock, causing the carbuncle phenomena. Certain dissipation should be added to
suppress such anomaly. In the previous ETAU scheme, a multi-dimensional dissipation
model is developed to systematically cure the pathological behaviors.

2.3 Multi-dimensional dissipation model

The ETAU scheme is an improved upwind scheme of Godunov type. The Godunov type
methods contains subtle flaws of the so-called pathological behaviors. In the original
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ETAU scheme, a multidimensional dissipation model [17] is applied to cure the patho-
logical behaviors. This distinctive method is based on increasing the dissipation by aver-
aging the conservative variables at each time step.

Shown in Fig. 1(b), M, N and P are the midpoints of the edge AB, BC, and CA. The
right state at these midpoints are extrapolated from their neighboring cell centers D, E

and F by using Taylor expansion:

Un
M=Un

D+(Un
x )D∆x+(Un

y )D∆y,

Un
N =Un

E+(Un
x )E∆x+(Un

y )E∆y,

Un
P=Un

F+(Un
x )F∆x+(Un

y )F∆y.

(2.12)

The average of these values are given by

Ũ=(Un
M+Un

N+Un
P)/3. (2.13)

Here Ũ is an approximation of Uo with some spatial smearing at each time step. The
multi-dimensional dissipation model is realized by replacing Un with a weighted aver-
age (βŨ+(1−β)Un), which induces some omni-directional dissipation. Then, the ETAU
scheme [28–30] is given as

Un+1=βŨ+(1−β)Un− ∆t

∆s

3

∑
k=1

[Fn+1/2
k (nx)k+Gn+1/2

k (ny)k
]∆lk , (2.14)

where β>0 is the weighing factor, which controls level of the numerical dissipation.

By this weighted averaging process, some numerical dissipation is introduced to the
scheme. Most subsonic or low supersonic flows are insensitive to this weighing factor,
while β = 0.001 is enough. For flows with high Mach number, β may need to increase
to 0.1. This dissipation method is very versatile, because it is external to the Riemann
solver. The numerical results [28,29] showed that it can systematically cure the patholog-
ical behaviors. However, it will globally increase the dissipation. This may smear some
features of the flow field. Meanwhile, the weighting factor is varied to fit a specific case.

3 Metric-based mesh adaptation

In present work, a metric-based mesh adaptation algorithm is employed to resolve the
presence of shocks and alleviate its instabilities. The main strategy of anisotropic mesh
adaptation is based on Riemannian metric tensors [34–36]. Then, the requirements on the
mesh for sizes, shapes and orientations are expressed in term of a metric tensor field. In
order to clearly express the method, some basic concepts of metric tensor are briefed in
following.
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3.1 Basic concept of metric tensor

A metric tensor field of domain Ω is a Riemannian metric space, which can be denoted
by (M (x))x∈Ω. A metric tensor M in space R

n is an n×n symmetric definite positive
matrix. Thus, M is always diagonalizable and can be decomposed as

M =tRΛR, (3.1)

where R and Λ are the eigenvectors and the eigenvalues, respectively. Here, Λ is a diag-
onal matrix, composed by positive eigenvalues λ; and R is a orthonormal matrix, there
is Rt =R−1.

The scalar product of two vectors in space R
n can be defined related to a metric M as

<u,M v>, (3.2)

where the natural dot product of R
n has been denoted by <u,v>. Under this notion, the

Euclidean norm of a vector u in R
n according to the metric M , is defined as

‖u‖M =
√

〈u,u〉M =
√

tuM u. (3.3)

This norm measures the length of vector u with respect to the metric M .
The computation of lengths and volumes are two fundamental geometric operation

in a mesh generator. The length of edges in the adaptive mesh are calculated in the
Riemannian metric space, rather than in the Euclidean one. Assume the end points of
an edge are xi and xj, the edge e = [xi,xj] can be expressed using the parameterization
γ(t)=xi+te, t∈ [0,1]. Then, the length of the edge e can be computed as

ℓM(e)=
∫ 1

0

√

teM(xi+te)edt. (3.4)

The volume of an element K is evaluated by

|K|M=
∫

K

√

det(M(x))dx. (3.5)

The basic idea of metric-based mesh adaption is very simple, but practical. Now, for
metric-based mesh adaptation, the key step is the construction of the metric tensor field.

3.2 Construction of metric tensor

The computation of the metric is obviously the central point for the metric-based mesh
adaptation. Given a discrete numerical solution on a 2D grid, an Hessian matrix H of a
flow variable (φh) at the node of the computational mesh, is the matrix of second deriva-
tives, written as

H=





∂2φh

∂x2

∂2φh

∂x∂y
∂2φh

∂y∂x
∂2φh

∂y2



. (3.6)
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The physical meaning of the Hessian matrix is the curvature of the solution’s map. It
is reasonable to place more mesh cells where the curvature is large. Then, defining the
metric based on the Hessian matrix is a natural idea.

Obviously, the Hessian matrix H is symmetric and can be decomposed as

H=tRΛR=
[

~e1 ~e2

]

[

λ1 0
0 λ2

]

[

~eT
1

~eT
2

]

, (3.7)

where~ei are the eigenvectors, and λi are the eigenvalues. In practice, the Hessian matrix
should be slightly modified in order to construct the adaptation metric, which is given as

M=tRΛ̃R=
[

~e1 ~e2

]

[

λ̃1 0
0 λ̃2

]

[

~eT
1

~eT
2

]

, (3.8)

where
λ̃i =min

(

max
(

c|λi|/ǫ,h−2
max

)

,h−2
min

)

.

This presents the metric computation based on the Hessian matrix. During remeshing

process, the target size along the direction of the eigenvector ~e1 is hi = λ̃−1/2
i . The val-

ues of the free parameters hmin and hmax are user defined, which denote the minimum
and maximum allowable target edge sizes, while the constant c/ǫ controls the level of
interpolation error and consequently the final number of mesh elements.

In present work, the open source package Mmg [36] is applied to adapt the mesh.
This package can generate an anisotropic mesh complying with the prescribed metric Mi

and user defined parameters, with the local mesh operators, including points insertion,
swaps of edges and points smoothing.

As we have discussed, the reason why the pathological behaviors often happen in
upwind schemes is that when the cell interface flux is calculated with a Riemann solver,
only the flow variables normal to the interface are considered. Their components parallel
to the interface are completely ignored with no damping. This operation in the upwind
schemes makes the numerical solution is vulnerable to the disturbance in the direction
aligned with the shock, causing the carbuncle phenomena. Hence, certain dissipation
mechanism should be added to suppress such anomaly. As we proposed in this paper,
one way to do so is to use elongated mesh in the direction parallel to the shock. As
numerically, a larger mesh size or elongation in this direction implies more numerical
dissipation.

With the presence of shock, the gradients of flow variables are very large, especially
in the direction normal to the shock. Meanwhile, the gradients in the direction parallel to
the shock are relatively small compared to the normal direction. During the remeshing
process, the Hessian matrix of the flow variable has a large value normal to the shock,
and a small value parallel to the shock. Thus, the meshes adapted by the Hessian-based
metric have the stretch effect in the direction parallel to the shock. A larger mesh size
will be achieved in the direction parallel to the shock. This means more dissipation in the
parallel direction is added, which is beneficial for the damping of shock instability.
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4 Numerical results and discussion

(a) Supersonic flow past a cylinder

The first example is the supersonic flow past a cylinder. A freestream of Ma = 10.0 is
imposed at the inlet boundary. The matched layer-capturing absorbing boundary con-
dition [39] is applied to the outflow boundary. At the cylinder, the slip wall condition
is applied. For upwind schemes, the bow shock is prone to be instable at the stagnation
region, thus the carbuncle phenomenon presented in Fig. 2. The computational mesh
is purposely generated with some perturbation to the shock, seen in Fig. 2(a) and (b).
The carbuncle phenomenon is named first by Peery and Imlay [6] in 1988. It occurs with
most upwind schemes, when computing supersonic flow past a blunt body. As Quirk [7]
suggested that the insufficient dissipation in the direction parallel to the shock is respon-
sible for the numerical instability. The dissipation required for the numerical stability is
mainly introduced by the Riemann solver at the cell interface. With the left and right
states across the cell interface, the Riemann solver compromises the two different states,
leading to some numerical dissipation [17]. However, in the direction parallel to the
shock, the two states across the cell interface are almost the same, which lead to insuffi-
cient of dissipation. This will be much more deteriorating, when one family of grid lines
is aligned or parallel to the shock.

Figure 2: The illustration of mesh adaptation: (a) the computational mesh; (b) close-up view; (c) the carbuncle
phenomenon.
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Figure 3: The mesh adaptation for curing the carbuncle phenomenon: (a) the original mesh; (b) first adaptation;
(c) second adaptation.

The metrics-based mesh adaptation can locally refine and adjust the anisotropic mesh
based on a predefined metric. The original grid is an unstructured grid with very coarse
resolution, shown in Fig. 3(a). There are about 2,072 triangular cells in the computational
domain. As shown in Fig. 3, the meshes are adapted based on the metric constructed by
the Hessian matrix of the pressure field. The total mesh cells of the first and second adap-
tation are 4,294 and 6,992, respectively. The meshes are well refined within the region of
the bow shock. Meanwhile, the adapted anisotropic meshes are elongated in the direc-
tion parallel to the shock. This will increase the damping effect in the parallel direction
of the shock.

Then, Fig. 4 shows the pressure field computed on different meshes. On the origi-
nal coarse mesh, the shock is not well resolved with some oscillation in the stagnation
regime, shown in Fig. 4(a). In the original ETAU scheme with the multi-dimensional
dissipation model, in order to cure the pathological behaviors, the dissipation parameter
β may need to increase from the level of 0.001 to 0.01. Here, the numerical results in
Fig. 4 are computed without applying the multi-dimensional dissipation model. After
two steps of mesh adaptation, the bow shock can be well resolved with the refinement
of mesh, shown in Fig. 4(b) and (c). The carbuncle instability is prominently eliminated
by the mesh refinement, without applying the multi-dimensional dissipation model. The
anisotropic property of the mesh elements across the shock is hard to trigger the instabil-
ity. The pressure and density profiles along the centerline are plotted in Fig. 5. The black
dot line is the pressure profile on the original mesh. The red dash line and blue solid line
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Figure 4: The numerical results of the pressure: (a) the original mesh; (b) first adaptation; (c) second adaptation.

(a) (b)

Figure 5: Comparison of the pressure and density profile along the centerline.

are the pressure profiles, calculated from the first and second adaptations, respectively.
It is shown that the sharp jump of pressure and density across the bow shock is well
resolved after two steps of mesh refinement.
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(b) Supersonic flow past a ramp

The second pathological behavior is the kinked Mach stem, when the supersonic flow
past a 30◦ ramp is calculated. A freestream of Ma=5.5 is imposed at the inflow boundary

(ρi,ui,vi,pi)=(5.1489,4.4318,0,25.0893).

The matched layer-capturing absorbing boundary condition [39] is applied to the outlet.
At the top, bottom and the ramp surface, the slip wall condition is applied.

The original computational mesh is given in Fig. 6(a), with 36,240 triangular cells.
Fig. 6(b) is a close-up view of the mesh. This kind of mesh is very common in computa-
tion of the supersonic flow past a ramp. The resolution of the grid is quite well. But the
alignment of the grid lines with the shock may induce some oscillation of the numerical
solution. The reflection of the plane shock from the ramp lies in the double-Mach reflec-
tion regime, the principal Mach stem is sometimes kinked, shown in Fig. 7(a). The kinked
Mach stem is another famous pathological behavior of upwind schemes. The double re-
flection shocks are aligned with one family of the grid lines, which is prone to activate
the numerical instability. For the original ETAU scheme, when the multi-dimensional
dissipation model is applied, the Mach stem can be recovered, shown in Fig. 7(b). Here,
the dissipation parameter β is 0.1 to cure the anomaly.

After the mesh adaptation operation, the adapted mesh is presented in Fig. 8, with
total cells of 5,468. The mesh is also adapted based on the metric constructed by the
Hessian matrix of the pressure field. The cells far away from the shock is coarse, while the
cells within the shock region are well resolved. This kind of arrangement can significantly
damp the acoustic wave near the inlet and outlet, while the resolution of the shock is
remained. The orientation of the cells near the shock is along the parallel direction of
the shock. Meanwhile, the shape of the triangular cells is also stretch along the parallel

Figure 6: The computational mesh of the Mach stem: (a) the mesh; (b) close-up of the mesh.
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(a) (b)

Kinked Mach stem Correct Mach stem

Figure 7: The numerical results: (a) the kinked Mach stem; (b) the correct Mach stem with cure, β=0.1.

(a) (b)

Figure 8: The numerical results: (a) the adapted mesh; (b) the pressure field.

direction. The result is calculated without applying the multi-dimensional dissipation
model. The kinked Mach stem is corrected on the adapted anisotropic mesh. This kind
of anisotropic mesh is hard to trigger for the instability. Meanwhile, the elongated mesh
along the shock has the damping effect to the numerical instability.

(c) Shock wave diffracting around a corner

At the inlet boundary, a free-stream of Ma=5.09 is imposed:

(ρi,ui,vi,pi)=(5.0294,4.0779,0,21.4710).

The matched layer-capturing absorbing boundary condition [39] is set at the outlet bound-
ary. The slip wall condition is applied at the top, bottom and along the surface of the
corner.
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Figure 9: The computational mesh: (a) the original mesh; (b) close-up of the mesh.

(a) (b)

Figure 10: The numerical results of the pressure field: (a) the expansion shock; (b) cure with the multi-
dimensional dissipation model, β=0.001.

The original mesh contains 14,440 triangles. We purposely generated with some per-
turbation aligned with the rectangle corner, shown in Fig. 9. As Quirk’s observation [7],
one family of grid lines aligned to the shock is an essential condition for the activation
of the shock instability. The flaw of the original mesh may induce some pathological be-
haviors of the numerical solution. The instability is observed behind the corner, shown
in Fig. 10(a), which is induced by the perturbation of the mesh. In the previous ETAU
scheme, after applying the multi-dimensional dissipation model, the instability can be
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(a) (b)

Figure 11: The numerical result of mesh adaptation.

eliminated. However, when the level of the total numerical dissipation is increased, the
rarefaction shock is also smeared, shown in Fig. 10(b).

After the mesh adaptation is applied, the refined mesh is presented in Fig. 11(a). The
total number of the triangular cells is 17,379. Here, we applied some operation of the
Hessian matrix of the pressure to limit the metric near the corner. Because the cells with
large aspect ratio close to the corner may lead to the failure of the numerical solution. The
mesh adjustment and refinement during the adaptation process improved the quality of
cells around the corner and removed the alignment of grid lines. Without the triggering
of the aligned grid line, the expansion shock is alleviated on the refined mesh. Mean-
while, the resolution of the rarefaction shock and the strong shock are well improved,
due to the refinement of the adapted anisotropic mesh, shown in Fig. 11(b). With the
mesh adaptation procedure, the rarefaction shock is maintained.

To show the mesh adaptation procedure of the unsteady process, the movement of
the shock wave is presented in Fig. 12 at three snapshots. The adapted meshes are pre-
sented in Fig. 12(a), (b) and (c), while the corresponding pressure fields are presented in
Fig. 12(d), (e) and (f). The positions of the shock wave are well captured by the refined
meshes. Meanwhile, the shock wave are stable and clear with the mesh adaption.

5 Conclusions

In conclusion, a metric-based mesh adaptation algorithm is applied for curing the patho-
logical behaviors of the original upwind finite volume scheme. The basic flow solver
applied is the enhanced time-accurate upwind (ETAU) scheme. In the original ETAU
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Figure 12: The unsteady evolution of the shock.

scheme, the multi-dimensional dissipation model is required to cure the pathological be-
haviors of upwind schemes. In present work, the mesh adaption strategy provides an
alternative way to cure the pathological behaviors of the upwind schemes. The Hessian-
based metric can not only improve the resolution across the shock, but also has the effect
of elongating the edges of cells parallel to the shock. The stretch of the cells along the
parallel direction of shock increases the dissipation in this direction. This is beneficial
for the damping of the numerical instability. Several classic numerical tests show that
the mesh adaptation has the beneficial effect to alleviate the pathological behaviors, due
to the anisotropic property of the mesh and the improved resolution across the shock.
The flaws of upwind schemes have complicate origin. This work is a tentative effort to
confront this issue. More works still remained to find out the numerical and physical
explanation of the pathological behaviors of Godunov type upwind schemes.
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