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Abstract. In this paper, we study lump and interaction solutions of the (2+1)-dimen-

sional bidirectional Sawada-Kotera equation. By using the Hirota bilinear method and

considering a combined function with a positive quadratic function, we determine a few

lump and interaction solutions of the bidirectional Sawada-Kotera equation. In order to

ensure solvability of the corresponding solutions, five cases of necessary conditions for

the parameters are explicitly presented. Dynamical properties of the resulting solutions

are demonstrated, upon selecting appropriate values for the parameters.
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1. Introduction

It is well known that the study on exact solutions of nonlinear equations plays a key

role in nonlinear science. With the continuous advancement of research, solitons and im-

portant problems closely related to soliton theory have been found in many fields, such

as physics, biology, medicine, oceanography, economics, and population problems. It is
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one of the most basic and important tasks in mathematics to find exact solutions of non-

linear equations. In recent years, more and more scholars have paid attention to exact

solutions, particularly to nonlinear differential equations. Indeed, many powerful methods

have been developed, which include the inverse scattering approach [1], the Bäcklund

transformation [29, 31], Darboux transformation [28], C-K direct method [3, 11], Hirota

bilinear approach [7], the auxiliary equation method [15], and the long wave limit method.

In the recent study of nonlinear problems, the Hirota bilinear method has become a po-

pular and efficient method to generate lump solutions. Very recently, in soliton theory,

lump solutions have been attracting more and more attention [13, 14]. Lump solutions

are a kind of regular and rationally function solutions, localised in all directions in the

space [19], which appear in many physical phenomena. Amazingly, lump and interaction

solutions have been presented and analysed for many nonlinear equations of mathematical

physics [2,6,8,9,12,16–18,20–23,26,27,30,32,34,36–40], even for linear wave equations

— cf. [24], and with higher-order dispersion relations [25].

In this paper, we will study lump and interaction solutions and their dynamics for

a (2+1)-dimensional bidirectional Sawada-Kotera (bSK) equation. The (2+1)-dimensional

bSK equation reads [10]

9uy −
�

5ux t + 15u3 + 15uux x + ux x x x

�

x
− 15uut

+ 5(∂ x)−1ut t − 15ux(∂ x)−1ut = 0, (1.1)

which is subordinate to the Kadomtsev-Petviashvili equation. Here, (∂ x)−1 = (∂ /∂ x)−1

and u is a function of variables x , y and t. It was formulated as a bidirectional generali-

sation of the Sawada-Kotera (SK) equation [33]. Its bidirectionality and relationship with

the SK equation was pointed out in [4]. In view of its connection with the SK equation,

the bSK equation also belongs to the Kadomtsev-Petviashvili hierarchy of B-type (BKP hi-

erarchy) [5], the first equation of which has been shown to possess lump solutions [35].

Therefore, it will be interesting to explore lump and interaction solutions to the (2+1)-

dimensional bSK equation.

The structure of the rest of the paper is as follows. In Section 2, we present a Hirota

bilinear form of the (2+1)-dimensional bSK equation by the Hirota bilinear method. Then,

through analysis and symbolic computations with Maple, we compute exact solutions of the

bSK equation. Some figures of the resulting lump and interaction solutions with appropriate

choices of the involved parameters are made to exhibit energy distributions and dynamical

properties. In Section 3, we give a brief conclusion to summarize our work.

2. Lump and Interaction Solutions for the (2+1)-Dimensional bSK Equation

2.1. Bilinear form for the bSK equation

Under the bilinear transformation

u = 2∂ 2
x

ln f , (2.1)
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where f (x , y, t) is unknown real function, the Eq. (1.1) can be transformed into the bilinear

forms as follows:

BbSK( f ) :=
�

9Dx Dy − 5D3
x
Dt − D6

x
+ 5D2

t

�

f · f

= 2
�

9( fx y f − fx f y )− 5( fx x x t f − fx x x ft + 3 fx x fx t − 3 fx fx x t)

−
�

fx x x x x x f − 6 fx x x x x fx + 15 fx x x x fx x − 10 f 2
x x x

�

+ 5
�

ft t f − f 2
t

�

�

, (2.2)

where Dt , Dx , Dy are the bilinear derivative operators [7] defined by

Dm
x Dn

y D
q
t f · g = (∂x − ∂x ′)

m(∂y − ∂y′)
n(∂t − ∂t ′)

q × f (x , y, t)g(x ′, y ′, t′)|x ′=x ,y′=y,t ′=t ,

where m, n and q are the positive integers, f is the function of x , y and t, and g is the

function of the formal variables x ′, y ′ and t′.

2.2. Lump and interaction solutions for bSK equation

In this section, we make f (x , y, t) as a combination of positive quadratic function with

trigonometric function and exponential functions (The positive polynomial part in f con-

tributes to the lump, the trigono-metric function part, to the breather, and the exponential

function part, to the soliton), that is

f (x , y, t) = g2 + h2 + a9 cos(a10 x + a11 y + a12 t + a13)

+ exp
�

− (a14 x + a15 y + a16 t + a17)
�

+ a18 exp(a14 x + a15 y + a16 t + a17), (2.3)

where two linear wave variables are defined by

g = a1 x + a2 y + a3 t + a4,

h = a5 x + a6 y + a7 t + a8,

where ai, i = 1, . . . , 18 are real numbers to be confirmed later. Substituting (2.3) into

(2.2), then we obtain a group of equations for the parameters. Next, equating all the

coefficients of independent variables to zeros, we obtain a set of parameters. After analysis

and calculations, we get a series of relationships between parameters. The solutions are as

follows.

Case 1. In order to get lump solution of bSK equation, we set ai = 0, i ≥ 10. After calcu-

lation, we can get the lump solutions as follows:

u(x , y, t) =
4a2

5

(−G y + a3 t + a4)
2 + (a5 x −H y + Dt + a8)

2 + a9

−
8a2

5(a5 x −H y + Dt + a8)
2

�

(−G y + a3 t + a4)
2 + (a5 x −H y + Dt + a8)

2 + a9

�2
, (2.4)
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and

u(x , y, t) =
4(a2

1 + a2
5)

(a1 x − E y + a3t + a4)
2 + (a5 x − F y + a7 t + a8)

2 + C

−
2
�

2(a1 x − E y + a3 t + a4)a1 + 2(a5 x − F y + a7t + a8)a5

�2

�

(a1 x − E y + a3 t + a4)
2 + (a5 x − F y + a7 t + a8)

2 + C
�2

, (2.5)

where

G =
10a3

3a9

27a4
5

, H =
5a2

3

�

− 9a6
5 + a2

3a2
9

�

81a7
5

, D =
a2

3a9

3a3
5

,

C =
1

(a1a7 − a3a5)
2

�

3a5
1
a3 + 3a4

1
a5a7 + 6a3

1
a3a2

5
+ 4a2

1
a3a4a7a8

+ 6a2
1a3

5a7 − 2a1a2
3a4a5a8

+ 3a1a3a4
5
+ 2a1a4a5a2

7
a8 + 3a5

5
a7

�

,

E =
5
�

a1a2
3 − a1a2

7 + 2a3a5a7

�

9a2
1
+ 9a2

5

, F =
5
�

2a1a3a7 − a2
3a5 + a5a2

7

�

9a2
1
+ 9a2

5

,

and a1a7−a3a5 6= 0. Fig. 1 shows 3D plots and contour plot of these two solutions at t = 0,

respectively.

Case 2. In this case

a2 = 0, a3 = 0, a6 = 0, a7 = 0, a10 = 0,

a11 = 0, a12 = 0, a15 = −a5
14, a16 = −a3

14, a18 = 0,

ai = ai, i = 1,4,5,8,9,13,14,17. (2.6)

Substituting (2.6) into (2.3), we have

f (x , y, t) = (a1 x + a4)
2 + (a5 x + a8)

2 + a9 cos(a13)

+ exp
�

a5
14

y + a3
14

t − a14 x − a17

�

. (2.7)

Substituting (2.7) into (2.1), we can get the form of u

u(x , y, t) =
2
�

2a2
1 + 2a2

5 + a2
14 exp
�

a5
14 y + a3

14 t − a14 x − a17

��

(a1 x + a4)
2 + (a5 x + a8)

2 + a9 cos(a13) + exp
�

a5
14

y + a3
14

t − a14 x − a17

�

−
2
�

2(a1 x + a4)a1 + 2(a5 x + a8)a5 − a14 exp
�

a5
14 y + a3

14 t − a14 x − a17

��2

�

(a1 x + a4)
2 + (a5 x + a8)

2 + a9 cos(a13) + exp
�

a5
14

y + a3
14

t − a14 x − a17

��2
.

In Fig. 2, we give two different plots to show the change of u. That is a soliton with a lump

wave.
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(a) (b)

(c) (d)

Figure 1: Spatiotemporal structure of solution (2.4) with the parameter selections a1 = 1, a4 = 1, a5 = 1,
a8 = 1, a9 = 1; (a) t = 0; (b) contour plots (top) t = 0. Spatiotemporal structure of solution (2.5) with
the parameter selections a1 = 1, a4 = 1, a5 = 1, a8 = 1, a9 = 1, a3 = 1, a9 = 1, (c) t = 0; (d) contour
plots (top) t = 0.

(a) (b)

Figure 2: Spatiotemporal structure of solution u with the parameter selections a1 = 2, a4 = 1, a5 = 2,
a8 = 1, a9 = 2, a13 = 1, a14 = 1, a17 = 2; (a) t = 15; (b) contour plots (top) t = 15.

Furthermore, in next case, we show a special form in Case 2.

a2 = 0, a3 = 0, a6 = 0, a7 = 0,

a9 = 0, a15 = −a5
14, a16 = −a3

14, a18 = 0,

ai = ai, i = 1,4,5,8,14,17. (2.8)
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(a) (b)

Figure 3: Spatiotemporal structure of solution u with the parameter selections a1 = 1, a4 = 1, a5 = 2,
a8 = 1, a14 = 2, a17 = 3, (a) t = −5; (b) contour plots (top) t = −5.

Substituting (2.8) into (2.3), we get the concrete form of the function f

f (x , y, t) = (a1 x + a4)
2 + (a5 x + a8)

2 + exp
�

a5
14

y + a3
14

t − a14 x − a17

�

. (2.9)

Substituting (2.9) into (2.1), we obtain the exact solution of the Eq. (1.1). Then we have

u(x , y, t) =
2
�

2a2
1 + 2a2

5 + a2
14 exp
�

a5
14 y + a3

14 t − a14 x − a17

��

(a1 x + a4)
2 + (a5 x + a8)

2 + exp
�

a5
14

y + a3
14

t − a14 x − a17

�

−
2
�

2(a1 x + a4)a1 + 2(a5 x + a8)a5 − a14 exp(a5
14 y + a3

14 t − a14 x − a17)
�2

�

(a1 x + a4)
2 + (a5 x + a8)

2 + exp
�

a5
14

y + a3
14

t − a14 x − a17

��2
.

When the values of these parameters are changed, the structure of the lump solutions

will also change accordingly. Here, the spatial variation of u is shown in Fig. 3. That

are breathers with a rogue wave.

Case 3. In this case

a1 =
2

3

a7

a2
14

, a2 =
5

6
a2

14a7, a3 = −
3

2
a2

14a5, a6 =
5

4
a4

14a5,

a9 = 0, a15 =
1

4
a5

14, a16 =
1

2
a3

14, a18 = 0,

a14 6= 0, ai = ai , i = 4,5,7,8,14,17. (2.10)

Substituting (2.10) into (2.3), we get the quadratic function f

f (x , y, t) =

�

2

3

a7 x

a2
14

+
5

6
a2

14a7 y −
3

2
a2

14a5 t + a4

�2

+

�

a5 x +
5

4
a4

14a5 y + a7 t + a8

�2

+ exp

�

−a14 x −
1

4
a5

14 y −
1

2
a3

14 t − a17

�

. (2.11)
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Substituting (2.11) into (2.1), we obtain the value of u

u(x , y, t) =

2

�

8
9

a2
7

a4
14

+ 2a2
5 + a2

14 exp
�

−a14 x − 1
4 a5

14 y − 1
2 a3

14 t − a17

�

�

k2
1
+ k2

2
+ exp
�

−a14 x − 1
4 a5

14
y − 1

2 a3
14

t − a17

�

−
2

�

4
3

k1a7

a2
14

+ 2k2a5 − a14 exp
�

−a14 x − 1
4 a5

14 y − 1
2 a3

14 t − a17

�

�2

�

k2
1
+ k2

2
+ exp
�

−a14 x − 1
4 a5

14
y − 1

2 a3
14

t − a17

��2
,

where two linear variables are defined by

k1 =
2

3

a7 x

a2
14

+
5

6
a2

14
a7 y −

3

2
a2

14
a5t + a4,

k2 = a5 x +
5

4
a4

14a5 y + a7t + a8.

Here, we put two plots to present the change of lump solution — cf. Fig. 4. That is a soliton

with a lump wave.

(a) (b)

(c) (d)

Figure 4: Spatiotemporal structure of solution u with the parameter selections: a4 = 2, a5 = 1, a7 = 2,
a8 = 2, a14 = 1, a17 = 2, (a) t = −10; (b) t = 0; (c) t = 15, (d) contour plots (top) t = −10.
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Case 4. In this case

a1 = −
2

3

a7

a2
14

, a2 = −
5

6
a2

14
a7, a3 =

3

2
a2

14
a5, a6 =

5

4
a4

14
a5,

a9 = 0, a15 =
1

4
a5

14, a16 =
1

2
a3

14, a18 = 0,

a14 6= 0, ai = ai , i = 4,5,7,8,14,17. (2.12)

Substituting (2.12) into (2.3), we get the form of the function f

f (x , y, t) =

�

−
2

3

a7 x

a2
14

−
5

6
a2

14a7 y +
3

2
a2

14a5 t + a4

�2

+

�

a5 x +
5

4
a4

14a5 y + a7 t + a8

�2

+ exp

�

−a14 x −
1

4
a5

14 y −
1

2
a3

14 t − a17

�

. (2.13)

Substituting (2.13) into (2.1), we have

u(x , y, t) =

2

�

8
9

a2
7

a4
14

+ 2a2
5 + a2

14 exp
�

−a14 x − 1
4 a5

14 y − 1
2 a3

14 t − a17

�

�

l2
1
+ l2

2
+ exp
�

−a14 x − 1
4 a5

14
y − 1

2 a3
14

t − a17

�

−
2
�

−4
3

l1a7

a2
14

+ 2l2a5 − a14 exp
�

−a14 x − 1
4 a5

14
y − 1

2 a3
14

t − a17

�

�2

�

l2
1
+ l2

2
+ exp
�

−a14 x − 1
4 a5

14
y − 1

2 a3
14

t − a17

��2
,

where two linear variables are defined by

l1 = −
2

3

a7 x

a2
14

−
5

6
a2

14a7 y +
3

2
a2

14a5 t + a4,

l2 = a5 x +
5

4
a4

14a5 y + a7t + a8.

In Fig. 5, we can get the change of u. That is a soliton with a lump wave.

(a) (b)

Figure 5: Spatiotemporal structure of solution u with the parameter selections a4 = 1, a5 = 3, a7 = 2,
a8 = 2, a14 = 1, a17 = 2, (a) t = −5; (b) contour plots (top) t = −5.
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Case 5. In this case

a2 = 0, a3 = 0, a6 = 0, a7 = 0,

a9 = 0, a15 = −a5
14, a16 = −a3

14,

a14 6= 0, ai = ai , i = 1,4,5,8,14,17,18. (2.14)

Substituting (2.14) into (2.3), we get the form of the function f

f (x , y, t) = (a1 x + a4)
2 + (a5 x + a8)

2 + exp
�

a5
14 y + a3

14 t − a14 x − a17

�

+ a18 exp
�

−a5
14

y − a3
14

t + a14 x + a17

�

. (2.15)

Substituting (2.15) into (2.1), we have

u(x , y, t) =
2
�

2a2
1 + 2a2

5 + a2
14 exp(A)
�

+ a18a2
14 exp (B)

(a1 x + a4)
2 + (a5 x + a8)

2 + exp(A) + a18 exp(B)

−
2
�

2(a1 x + a4)a1 + 2(a5 x + a8)a5 − a14 exp (A) + a18a14 exp (B)
�2

�

(a1 x + a4)
2 + (a5 x + a8)

2 + exp(A) + a18 exp(B)
�2

,

where two linear variables are defined by

A= a5
14 y + a3

14 t − a14 x − a17,

B = −a5
14

y − a3
14

t + a14 x + a17.

In Fig. 6, three-dimensional plots and contour plots of the lump solutions u are made via

Maple plot tools, to shed light on the characteristic of the lump solutions. That is a soliton

with a lump wave.

(a) (b)

Figure 6: Spatiotemporal structure of solution u with the parameter selections a1 = 2, a4 = 1, a5 = 2,
a9 = 2, a8 = 1, a13 = 1, a14 = 1, a17 − 2, a18 = 2, (a) t = 15; (b) contour plots (top) t = 15.
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3. Conclusions

In this paper, we have studied the (2+1)-dimensional bidirectional Sawada-Kotera equa-

tion. Based on the Hirota bilinear method and symbolic computations, we have trans-

formed the (2+1)-dimensional bSK equation into a Hirota bilinear form. Through choos-

ing a combed function with a quadratic function and symbolic computation with Maple,

five classes of lump and interaction solutions to the (2+1)-dimensional bSK equation have

been obtained. We have also made different plots with particular choices of the involved

parameters to show energy distributions and dynamical properties of the resulting lump

and interaction solutions. It is hoped that our results could be helpful in generating exact

wave solutions to nonlinear dispersive wave equations in higher dimensions and recogniz-

ing propagation and interaction characteristics of nonlinear waves.
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