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Abstract. The Sobolev polynomials, which are orthogonal with respect to an inner pro-

duct involving derivatives, are considered. The theory about these nonstandard poly-

nomials has been developed along the last 40 years. The local asymptotics of these

polynomials can be described by the Mehler-Heine formulae, which connect the poly-

nomials with the Bessel functions of the first kind. In recent years, the formulae have

been computed for discrete Sobolev orthogonal polynomials in several particular cases.

We improve various known results by unifying them. Besides, an algorithm to compute

these formulae effectively is presented. The algorithm allows to construct a computer

program based on Mathematica® language, where the corresponding Mehler-Heine for-

mulae are automatically obtained. Applications and examples show the efficiency of the

approach developed.
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1. Introduction

Sobolev orthogonal polynomials were first considered in a paper concerning the si-

multaneous polynomial approximation of functions and their derivatives in 1947 [17]. In

the sixties and seventies of the last century, the German school studied such polynomials,

mainly from a theoretical point of view [4, 11, 26, 27]. At the beginning of the nineties,

the topic attracted great interest after the seminal works of Iserles et al. [12, 13], where

among other results the authors proposed a useful algorithm for computing the coefficients

of the Fourier-Sobolev series. More details about the Sobolev orthogonality can be found

mainly in the survey [21], but a very short and concise overview is given in the first two

pages of [20]. More recently, several authors have found applications of this theory — e.g.

in the study of second-order elliptic equations on the real line [25], in elliptic boundary
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value problems combining Jacobi-Sobolev polynomials and spectral methods [31], and in

the Cauchy problem for ordinary differential equations [28,29].

In this paper we consider the Sobolev-type inner product or the discrete Sobolev inner

product

( f , g)S =

∫
f (x)g(x)dµ+Mn f ( j)(c)g( j)(c), (1.1)

where µ is a finite positive Borel measure supported on an infinite subset of the real line, c

is adequately located on the real axis, j ∈ N∪{0}, and {Mn}n≥0 is a sequence of nonnegative

real numbers satisfying a very general condition.

The orthonormal polynomials with respect to (1.1) are studied from a theoretical point

of view in [19]. There the authors provided a scaled asymptotics around the point c where

the perturbation of the standard inner product is introduced. This type of local asymptotics

is known either as Mehler-Heine formula or Mehler-Heine asymptotics. As it is well known,

it is quite useful to describe the asymptotic differences between the sequences of orthogonal

polynomials with respect to (1.1) and the orthonormal polynomials with respect to µ. In

fact, in that paper it was shown that the relative asymptotics or the Plancherel-Rotach type

asymptotics do not provide exciting results for these polynomials. Now, our goal is more

practical as we will describe below.

The paper [19] achieved two objectives. First, it presents a detailed description of the lo-

cal asymptotic behavior of these Sobolev-type orthonormal polynomials or discrete Sobolev

orthonormal polynomials (dSOP) in terms of a linear combination of special functions —

viz. the Bessel functions of the first kind

Jα(x) =

∞∑

k=0

(−1)k

k!Γ (k +α+ 1)

�
x

2

�2k+α

. (1.2)

The results obtained are valid for measures with bounded and unbounded supports and

generalize the works considering specifically chosen measures. Thus, paraphrasing [19],

the paper provides “a final and global vision of the Mehler-Heine asymptotics” for these

dSOP. Although the obtention of the Mehler-Heine formulae for the dSOP is constructive,

many details are omitted. Thus a question arises: what else can we add to this topic?

Obtaining the limit functions in [19, Theorems 1 and 2] requires many calculations.

Hence, the answer to the previous question is to provide an algorithm and the correspond-

ing computer program, which would automatically determine the limit functions of these

Mehler-Heine formulae — i.e. we used symbolic computation to obtain these limit func-

tions involving Bessel functions. This program is implemented on a computer using the

Mathematica® language 12.1.1 (also known as Wolfram language).† The program can be

downloaded from the https://w3.ual.es/GruposInv/Tapo/MHAS.nb.

Numerical algorithms for computation are a necessary and relevant tool when we want

to use orthogonal polynomials and special functions in applications. There are nice classic

books and articles on this topic — cf. Refs. [1,9,14–16,23]. Besides, there are many others

†The program in the previous versions of Mathematica®may not work properly — e.g. we found malfunctions

in the 11-th version.
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works where special cases are treated. As far as Sobolev orthogonality is concerned, the

literature is not too wide. Thus, as was already mentioned, the seminal papers [12, 13]

provide an algorithm to compute the coefficients of the Fourier-Sobolev expansion in the

setting of coherence of measures. In [9, Section 2.5] we can find an algorithm to compute

Sobolev orthogonal polynomials (SOP), and in [10] the zeros and critical points of SOP

are studied from a numerical approach. Now we compute the local asymptotic for dSOP

by using symbolic computation. As far as we know, it is the first work of this type in the

context of SOP. In addition, the use of the program has also permitted to clarify some subtle

theoretical aspects, see, for example, the comments in Subsection 4.2.1, Subsection 4.4 or

Remark 4.1. Furthermore, using Hurwitz’s theorem we obtain the asymptotic behavior of

the zeros of these dSOP.

We structure the paper in the following way. In Section 2 we improve all theoretical

results obtained in [19] that are necessary to construct the algorithm and the computer

program. In Section 3 we explain how the algorithm works by including a process flow

diagram. Finally, in Section 4 some applications and examples are shown.

2. Theoretical Results

We first summarize auxiliary results to make this section self-contained. Thus we im-

prove various issues in [19] by providing more details needed for establishing concrete

formulae.

Consider the discrete Sobolev inner product

( f , g)S =

∫
f (x)g(x)dµ+Mn f ( j)(c)g( j)(c), j ∈ N∪ {0}, (2.1)

where µ is a finite positive Borel measure supported on an infinite subset of the real line, c

a real number whose exact location will be determined later according to the measure µ,

and {Mn}n≥0 a sequence of nonnegative real numbers satisfying the general condition

lim
n→∞

MnK
( j, j)

n−1
(c, c) = L ∈ [0,+∞], (2.2)

where K
(ℓ,k)
n−1
(x , y) are the partial derivatives of the n-th kernel for the sequence of orthonor-

mal polynomials {pn}n≥0 with respect to µ, i.e.

K(ℓ,k)
n
(x , y) =

∂ ℓ+k

∂ xℓ∂ yk
Kn(x , y) =

n∑

i=0

p
(ℓ)
i
(x)p

(k)

i
(y), ℓ, k ∈ N∪ {0}.

Since the inner product (2.1) is varying, there is a square tableau of orthonormal polyno-

mials {q(Mn)

k
}k≥0 for each n, but we deal with the diagonal of this tableau {q(Mn)

n }n≥0 =:

{qn}n≥0. Obtaining the Mehler-Heine formulae for these dSOP was the main task in [19].

To do this, it was necessary to deal with a third family of orthonormal polynomials. Thus,

we denote by {p[2i]
n }n≥0 the sequence of orthonormal polynomials with respect to the mea-

sure µ2i with dµ2i(x) = (x − c)2i dµ(x), i ∈ N ∪ {0}. We will use the notation fn ≃ gn to

indicate that limn→∞ fn/gn = 1.

Taking into account the symmetry of measure µ, we distinguish two cases.
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2.1. µ is a nonsymmetric measure

We denote by I = supp(µ) ∈ R. Then, the point c is chosen either as c = inf(I) or

c = sup(I). In [19] the results about Mehler-Heine asymptotics were given taking c =

inf(I), although in Section 3 of that paper it was said “results can be also obtained with

c = sup(I) ∈ R making some changes”. Now, to obtain a computer program that considers

all the cases, we need to give the details that were not computed in [19].

We begin assuming that for the sequence {p[2i]
n }n≥0 we have the following Mehler-Heine

asymptotics:

lim
n→∞

sn,c

a1/2
n,c

bi
n,c

p[2i]
n

�
c + sc

z2

bn,c

�
= z−(νc+2i)Jνc+2i(2z), i = 0, . . . , j + 1, (2.3)

uniformly on compact subsets of C, where Jνc+2i are the Bessel functions of the first kind

and order νc + 2i given by (1.2),

sn,c =

¨
(−1)n, if c = inf(I),

1, if c = sup(I),
sc =

¨
1, if c = inf(I),

−1, if c = sup(I),
(2.4)

and

a−1/2
n,c
≃ Acn

ac , bn,c ≃ Bcn
bc , νc > −1, 2ac + 1= bc(νc + 1) (2.5)

with Ac, Bc , bc > 0.

Remark 2.1. Notice that conditions (2.3)-(2.5) are satisfied for a wide class of measures

— e.g. Nevai-Blumenthal class [6, 22], the measures related to a Laguerre weight or to

modified or generalized Jacobi weights [19,24].

Remark 2.2. The differences between the cases c = inf(I) and c = sup(I) is demonstrated

by an example in Section 4.

The proof of [24, Theorem 5], also used in [19], shows that if (2.3)-(2.5) are satisfied,

then
�
p[2i]

n

�(k)
(c) ≃ sn,c

(−sc)
k AcB

k+i
c

Γ (k + νc + 2i + 1)
n fc(k+i), 0≤ k ≤ n, (2.6)

where fc(x) = bc x + ac is a strictly increasing function with 2 fc(0) + 1 = bc(νc + 1) > 0.

Therefore, the relation (2.6) can be written as

�
p[2i]

n

�(k)
(c) ≃ Ck,isn,cn fc(k+i), 0≤ k ≤ n,

where

Ck,i =
(−sc)

k AcB
k+i
c

Γ (k + νc + 2i + 1)
. (2.7)

The constants Ck,i also depend on c, so when c = sup(I) these constants are always positive

and when c = inf(I) they alternate the sign according to the order of the derivatives k.
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Theorem 2.1. Assuming the conditions (2.3)-(2.5), we have the following Mehler-Heine asym-

ptotics for the dSOP qn:

lim
n→∞

sn,ca
1/2
n,c qn

�
c + sc

z2

bn,c

�
=

j+1∑

i=0

(−sc)
idi,c(L)z

−νc Jνc+2i(2z) := ϕc,νc , j,L
(z), (2.8)

uniformly on compact subsets of C, where Jνc+2i are the Bessel functions of the first kind given

by (1.2). The coefficients di,c(L) are known explicitly through the recursive process

di,c(L) = (−1)i
θc,i, j,L −
∑i−1

m=0
(−1)mdm,c(L)
�

i
m

�
m!

Ci−m,m

Ci,0

i!
C0,i

Ci,0

, 0≤ i ≤ j + 1, (2.9)

where the constants Ck,i are given in (2.7), and

θc,i, j,L =
L ( fc(i)− fc( j)) + fc(i) + fc( j) + 1

(1+ L)( fc(i) + fc( j) + 1)
(2.10)

with L determined by (2.2) denoting

θc,i, j,+∞ = lim
L→+∞

L( fc(i)− fc( j)) + fc(i) + fc( j) + 1

(1+ L)( fc(i) + fc( j) + 1)
=

fc(i)− fc( j)

fc(i) + fc( j) + 1
.

We note that the Mehler-Heine formulae (2.8) have been reported in [19, Theorem 1]

but only for the case c = inf(I).

Remark 2.3. It is easily seen that if the asymptotic behavior of the sequences an,c and bn,c

is known, then fc(k) and Ck,i can be computed straightforwardly. Furthermore, according

to [19, Eq. (6)], one can determine L by using the relation

K
( j, j)

n−1
(c, c) ≃

C2
j,0

2 fc( j) + 1
n2 fc( j)+1.

Consequently, we obtain

L = lim
n→∞

Mn

C2
j,0

2 fc( j) + 1
n2 fc( j)+1. (2.11)

With all these ingredients we can automatize, through a symbolic computer program, the

process for obtaining the limit function in (2.8).

2.2. µ is a symmetric measure

When µ is a symmetric positive Borel measure with respect to the origin, we take c = 0

in (2.1), i.e.

( f , g)S =

∫
f (x)g(x)dµ+Mn f ( j)(0)g( j)(0). (2.12)
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Therefore, the sequences of polynomials {pn}n≥0 and {qn}n≥0 are symmetric, and we have

to consider the corresponding subsequences of polynomials of even and odd degree — i.e.

{p2n}n≥0, {p2n+1}n≥0, {q2n}n≥0 and {q2n+1}n≥0. In this way, we can reproduce the method

described for nonsymmetric measures with slight differences.

We begin by assuming that for all i ≥ 0, the limits

lim
n→∞

(−1)n
a1/2

n

bi
n

p
[2i]

2n

�
z

bn

�
= z−(ν+i)Jν+i(2z), (2.13)

lim
n→∞

(−1)n
a1/2

n

bi
n

p
[2i]

2n+1

�
z

bn

�
= z−(ν+i)Jν+i+1(2z) (2.14)

hold uniformly on compact subsets of C. Note that Jt is the Bessel function of the first kind

and order t given by (1.2), and

a−1/2
n
≃ Ana, bn ≃ Bnb, ν > −1, 2a+ 1= 2b(ν+ 1) (2.15)

with A, B, b > 0.

The assumptions (2.13)-(2.15) are natural. For example, the generalized Freud poly-

nomials satisfy these conditions [19, 24]. In fact, they only need to hold for i = 0, i.e. for

the orthonormal polynomials with respect to µ, and the additional conditions

lim
n→∞

γ2n

γ2n+1

bn

n
= lim

n→∞
γ2n+1

γ2n+2

bn

n
=

1

2b
,

where γn are the leading coefficients of pn for n≥ 0, cf. [24, Lemma 3].

Similar to the nonsymmetric case, it is simple to deduce that there is a strictly increasing

function f (x) = bx + a with 2 f (0) + 1= b(ν+ 1)> 0 such that for 0≤ k ≤ n, one has

�
p
[4i]

2n

�(2k)
(0) ≃ Ck,i(−1)nn f (2k+2i) = Ck,i(−1)nng(k+i), (2.16)

�
p
[4i]

2n+1

�(2k+1)
(0) ≃ eCk,i(−1)nn f (2k+2i+1) = eCk,i(−1)nng∗(k+i), (2.17)

where g and g∗ are strictly increasing functions defined as

g(k) := f (2k) with 2g(0) + 1> 0,

g∗(k) := f (2k+ 1) with 2g∗(0) + 1> 0

and

Ck,i =
(−1)k(2k)!AB2(k+i)

k!Γ (k + ν+ 2i + 1)
, eCk,i =

(−1)k(2k+ 1)!AB2(k+i)+1

k!Γ (k + ν+ 2i + 2)
. (2.18)

Therefore, [19, Theorem 2] concerning the Mehler-Heine asymptotics for the symmetric

polynomials qn can be now written as follows.

Theorem 2.2. Let {qn}n≥0 be the sequence of orthonormal with respect to (2.12). Then,

assuming (2.13)-(2.15), we have uniformly on compact subsets of C,
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• when j = 2r,

lim
n→∞

(−1)na1/2
n q2n

�
z

bn

�
=

r+1∑

i=0

(−1)idi,1(L)z
−νJν+2i(2z) := Φν,r,L(z), (2.19)

lim
n→∞

(−1)na1/2
n q2n+1

�
z

bn

�
= z−νJν+1(2z);

• when j = 2r + 1,

lim
n→∞

(−1)na1/2
n

q2n

�
z

bn

�
= z−νJν(2z),

lim
n→∞

(−1)na1/2
n q2n+1

�
z

bn

�
=

r+1∑

i=0

(−1)idi,2(L)z
−νJν+2i+1(2z) := Φ∗ν,r,L(z). (2.20)

The coefficients di,1(L) and di,2(L) are given in a recursive way — viz.

di,1(L) = (−1)i
τi,r,L − (2i)!
∑i−1

m=0 dm,1(L)
(−1)iCi−m,m

(2(i −m))! Ci,0

(2i)!
C0,i

Ci,0

, (2.21)

di,2(L) = (−1)i

ρi,r,L − (2i + 1)!
∑i−1

m=0 dm,2(L)
(−1)i eCi−m,m

(2(i −m) + 1)! eCi,0

(2i + 1)!
eC0,i

eCi,0

, (2.22)

where the constants Ck,i and eCk,i are provided in (2.18), and

τi,r,L =
L(g(i)− g(r)) + g(i) + g(r) + 1

(1+ L)(g(i) + g(r) + 1)
, (2.23)

̺i,r,L =
L(g∗(i)− g∗(r)) + g∗(i) + g∗(r) + 1

(1+ L)(g∗(i) + g∗(r) + 1)
(2.24)

with

τi,r,+∞ = lim
L→+∞

τi,r,L =
g(i)− g(r)

g(i) + g(r) + 1
,

̺i,r,+∞ = lim
L→+∞

̺i,r,L =
g∗(i)− g∗(r)

g∗(i) + g∗(r) + 1
.

Jt denotes again the Bessel function of the first kind and order t given by (1.2).
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To compute the value of L we can proceed like in Remark 2.3. The symmetric case

was illustrated in [19, Section 6] with an example where the measure µ corresponds to

the classical Hermite weight on the real line. In the constructive process to obtain the

Mehler-Heine asymptotics the generalized Hermite polynomials appeared and, just as we

might expect, the sequences an and bn are related to the Maskhar-Rakhmanov-Saff numbers

cf. [8, p. 2].

The statements of the two theorems in this section have been given in detail to have all

the necessary ingredients for the algorithm and the computer program that we provide in

this paper.

3. Process Flow Diagram and Computer Program

In the previous section we have provided all the necessary results to obtain the Mehler-

Heine asymptotics for the discrete Sobolev orthonormal polynomials considered in this

work. Now, a natural question arises: which are the inputs that we need to run the com-

puter program? The rule should be the lesser inputs, the better. A first look at these results

tells us that it is mandatory to give the information of the symmetry (or nonsymmetry) of

µ, the general term of the sequence {Mn}n, and the values of the constants j and c (the

last one is taken automatically as 0 when the measure is symmetric). These are basic in-

puts determined by the inner product (1.1). In addition, a second somewhat deeper look

provides us with relevant information. Together with the previous inputs, if we know the

general term of the sequences an,c and bn,c (resp. an and bn), we can compute explicitly

all the functions and constants to obtain the Mehler-Heine formulae given in Theorem 2.1

(resp. Theorem 2.2). Therefore, the key inputs of the program are these two sequences.

In some situations both sequences are strongly connected: for example, for the general-

ized Freud orthonormal polynomials the sequence bn is easily obtained from the sequence

an [8]. But, in general, we choose to provide both sequences because they are obtained

in a straightforward way through the Mehler-Heine formulae satisfied by the standard or-

thonormal polynomials with respect to µ (according to the assumptions in Theorems 2.1

and 2.2).

In some cases both sequences are well-known for the corresponding families of or-

thonormal polynomials — e.g. Laguerre [30], Jacobi [30], or generalized Freud [2–8].

For this reason, we preloaded these families in the program. Thus, we want to know the

Mehler-Heine asymptotics for the discrete Sobolev orthonormal polynomials with respect

to (1.1), where µ is one of the measures related to the families of standard polynomials

just cited, then it is enough to indicate it without providing explicitly both sequences. In

fact, we could also include the case corresponding to the so-called modified or generalized

Jacobi orthonormal polynomials [7], i.e. when dµ = h(x)(1− x)α(1+ x)βd x with α,β > 0,

and where h is a real analytic function and strictly positive on [−1,1]. However, the func-

tion h has no influence on the Mehler-Heine asymptotics [7,24], so if we are interested in

this type of asymptotics for the dSOP in this case, then it is enough to consider the Jacobi

case with α,β > 0.
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In conclusion, to run the program, firstly, we choose either between the preloaded mea-

sures or the general case providing the key inputs — i.e. the sequences an,c and bn,c or an

and bn. Thus,

• General case (Key inputs). After entering both sequences, the program asks about

the symmetry (or nonsymmetry) of µ and for the basic inputs. For this case, we

remark that the user must know that the sequences considered satisfy the assump-

tions (2.3)-(2.4) given in Theorem 2.1 (resp. the conditions (2.13)-(2.14) in The-

orem 2.2). In other words, the user must know the corresponding Mehler-Heine

formulae for those polynomials. Anyway, to avoid wrong results, the program checks

automatically the condition (2.5) (resp. (2.15)).

• Preloaded cases. The program asks about some specific details of the preloaded

measures and for the basic inputs.

Regarding the outputs, the program returns the corresponding limit function in the

Mehler-Heine formula, together with three extras: the value of L, a list of the coefficients

of di,c(L), di,1(L) or di,2(L) as appropriate, and a plot of the limit function around the point

c (just where this type of local asymptotics is more precise).

Notice that the program checks the admissibility of the given inputs. Thus, as we have

commented before, it checks whether the sequences an,c and bn,c (resp. an and bn) satisfy

the conditions (2.5) (resp. (2.15)), and whether j is a nonnegative integer. In the preloaded

cases the program also checks that the involved parameters are admissible: for example,

in the Laguerre case the parameter α must be greater than −1.

We summarize how the algorithm and the computer program work in the following

process flow diagram — cf. Fig. 1.

4. Examples

We illustrate how the program works through examples where we only show some paths

of the process flow diagram given in the previous section. Nevertheless, we are confident

that it is sufficient to manage the program.

4.1. Example 1. Path: General Case

In this path we must provide the so-called key inputs. We tackle a case corresponding to

a nonsymmetric measure belonging to the Nevai-Blumenthal class considered in [5]. When

the Mathematica® notebook is evaluated, the first thing we see is the dialog notebook given

in Fig. 2. In this example, we will show that it is enough to fill eight dialog notebooks where

we will enter the basic and key inputs to get the desired limit function in the Mehler-Heine

asymptotics. When the measure is symmetric we will only fill six dialog notebooks because

c = 0. The number of dialog notebooks to fill does not include those asking for confirmation

about the data entered — cf. Fig. 5.
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Start: Choose between the gen-
eral case providing the key inputs
or the preloaded cases

Is measure µ symmetric? Choose one of the preloaded cases

General case: Key inputs Preloaded cases

Laguerre Jacobi Generalized Freud

Choose
between
c = 1 or
c = −1

Enter α, β,
j, and Mn

Enter α, j,
and Mn

Enter m, α,
j, and Mn

The program returns the limit
function in the Mehler-Heine
formula, the value of L, the co-
efficients di,c(L), and a plot of
the limit function around the
point c

The program returns the two
limit functions in the Mehler-
Heine formulae: one for the se-
quence of even polynomials and
the other one for the sequence
of odd polynomials, the value
of L, the coefficients di,1(L) or
di,2(L) as appropriate, and two
plots of the corresponding limit
functions around the point 0

Enter an,
bn, j, and
Mn

Enter c and choose between c =

inf(I) or c = sup(I)

Enter an,c ,
bn,c , j, and
Mn

Yes

No

Figure 1: Flow diagram.

We click on General case. Next, the program asks about the symmetry of the measure

— cf. Fig. 3. For this example, we choose No.

Next, the value and location (infimum or supremum) of point c are asked. We write 1

and click on Supremum in the corresponding dialog notebooks — cf. Figs. 4 and 6.
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Figure 2: First dialog notebook.

Figure 3: Second dialog notebook.

Figure 4: Third dialog notebook.

Figure 5: Dialog notebook asking for confirmation about the data.

Figure 6: Fourth dialog notebook.
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Since the nonsymmetric measure considered belongs to the Nevai-Blumenthal class

M(0,1), the sequences (key inputs) are known [5,24]. Thus,

an,1 = 4ν1 n−2ν1−1, bn,1 =
n2

2
.

It is easy to check that the conditions (2.5) are satisfied by any ν1 > −1. For this example,

we take ν1 = 1, so an,1 = 4/n3. In this way, we write these sequences in the dialog note-

books such as we see in Figs. 8 and 9. Obviously, and according to Theorem 2.1, the choice

of v1 changes the limit function in the Mehler-Heine formula. Thus, one question arises:

why does the program not ask about v1 (in general, for vc)? We think that it is better to

give only two sequences and let the program check whether all the conditions required in

(2.5) are satisfied. Thus, we trust the program — i.e. if we enter two sequences that do

not satisfy (2.5), then the program gives a warning. For example, if we enter an,1 = n and

bn,1 = 3n2, then from (2.5) we would deduce that ν1 = −1, which is not an admissible

value. Thus, the program returns the following warning:

Figure 7: Dialog notebook when (2.5) are not satisfied.

Notice that the program does not continue with the evaluation of the notebook and asks

us for a new expression for the sequence an,1 indicating the expression entered previously.

Next, a new expression for bn,1 will be requested.

Finally, the program asks for the remaining basic inputs such as the order of the deriva-

tives, j, and the general term of the sequence Mn. In this example, we chose j = 5 and

Mn = n2 − n + 3. Notice that Mn must be a sequence of nonnegative real numbers. This

relevant fact is warned in the corresponding dialog notebook, but it is not checked by the

program. Thus, these data are entered as Figs. 10 and 11 show.

Eventually, in this easy way the program provides us with relevant information — viz.

the case that we are tackling according to the value of L, the expression of the limit function

in the Mehler-Heine asymptotics together with a list of the coefficients (di,c(L)) in that

Figure 8: Fifth dialog notebook. Figure 9: Sixth dialog notebook.
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Figure 10: Seventh dialog notebook.

Figure 11: Eighth dialog notebook.

expression, and a plot of the limit function around point c. In this example, the relevant

outputs are collected in Figs. 12 and 13.

- 5 5 10

- 0.6

- 0.4

- 0.2

Figure 12: Graphic output of the program for this example.

We omitted all the dialog notebooks asking for confirmation about the data, except the

one shown in Fig. 5 as an example. These notebooks are useful in practice because they

help to avoid errors in input data.

4.2. Example 2. Path: Preloaded cases: Jacobi

For several standard orthonormal polynomials the sequences an,c and bn,c (resp. an

and bn) are known. There is no need to provide them because they are already imple-

mented in the program. Our second example corresponds to a classical bounded mea-

sure. More exactly, we obtain the Mehler-Heine asymptotics for the discrete Sobolev or-

thonormal polynomials for the measure µ determined by the Jacobi weight on [−1,1], i.e.

dµ(x) = (1− x)α(1+ x)βd x with α,β > −1.



14 J.F. Mañas-Mañas and J.J. Moreno-Balcázar

Figure 13: Output of the program for this example.

Now in Fig. 2, we click on Preloaded cases and obtain the dialog notebook shown in

Fig. 14.

Figure 14: Preloaded cases.

We choose Jacobi. In the next dialog notebook — cf. Fig. 15, we see the inner product

considered and are asked to choose the value of c. Here, we set c = −1.

Figure 15: The nonstandard inner product and the choice of c.
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In the next two steps we enter the values of the parameters α and β . For this example, we

choose α = 2 and β = 1/5, cf. Figs. 16 and 17.

Figure 16: The value of α. Figure 17: The value of β .

The program checks whether the parameters required are admissible. It is well known that

in this case the values α and β must be greater than −1. If we enter a non-admissible value,

the program returns a warning — e.g. for β = −5 we obtain the answer shown in Fig. 18.

Figure 18: Dialog notebook when a non-admissible value of a parameter is entered.

Finally, similar to Example 4.1, the inputs j and Mn are required. We omit the cor-

responding dialog notebooks. Thus, introducing the values j = 6 and Mn = n−132/5, the

program returns (we omit the output corresponding to the coefficients di,−1 to save space):

Figure 19: Value of L and limit function in the Mehler-Heine formula.
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Figure 20: Graphic output of the program.

4.2.1. Differences between c = −1 and c = 1.

The choice of c is very relevant. When c = −1 the value of β plays a main role in the

Mehler-Heine asymptotics. However, when c = 1, it is α which plays this role. Thus, the

value of L changes according to the value of c. In the case c = −1 we have

f−1(k) = 2k+ β +
1

2
, Ck,0 =

(−1)k

2
2k+α+β

2 Γ (k + β + 1)
.

Now it follows from (2.11) that

L = lim
n→∞

n−132/5
C2

6,0

2 f−1(6) + 1
n2 f−1(6)+1 =

C2
6,0

2 f−1(6) + 1
=

5

2162688
5p

2 Γ 2
�

36
5

� .

On the other hand, if c = 1 then

f1(k) = 2k+α+
1

2
, Ck,0 =

1

2
2k+α+β

2 Γ (k +α+ 1)
.

Consequently, we obtain

L = lim
n→∞

n−132/5
C2

6,0

2 f1(6) + 1
n2 f1(6)+1

= lim
n→∞

n−132/5 1

799065243648000
5p

2
n30 = +∞.

Repeating this example for c = 1 leads to the result shown in Fig. 21 visibly different from

the one in Fig. 19 for c = −1. The outcome is consistent with expressions (2.8) related to

Theorem 2.1.

We note that the Jacobi weights have been considered in [18] by using another stan-

dardization. However, if we orthonormalize the polynomials in [18], we obtain the same

results as in Theorem 2.1.



Sobolev Orthogonal Polynomials 17

Figure 21: Value of L and limit function in the Mehler-Heine formula when c = 1.

4.3. Example 3. Path: Preloaded Cases. Generalized Freud

To complete the examples, we consider a symmetric measure µ. In this way, we illus-

trate Theorem 2.2. We click on Preloaded cases and next on Generalized Freud in the dialog

notebook shown in Fig. 14. Notice that dµ(x) = x2me−2|x |αd x with α > 1, m ∈ N ∪ {0},
and c = 0.

The program asks for the value of m, cf. Fig. 22. As an example we choose m = 3.

Figure 22: Generalized Freud case and the choice of m.

We omit the dialog notebooks where the program requires the values for α, j, and the

general term Mn. Here, we choose α = 4, j = 6, and Mn = n. Omitting again the output

for the coefficients, the program returns, cf. Fig. 23 and 24.

Figure 23: Value of L and limit functions in the Mehler-Heine formula.

Remark 4.1. We make the following comments:

• According to Theorem 2.2, there are two Mehler-Heine formulae — viz. for even and

odd polynomials. Since j = 6, we have r = 3. Therefore, in this example the odd

case lacks interest.
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Figure 24: Graphic outputs of the program for this example.

• In [3] the authors prove that for standard generalized Freud orthogonal polynomials,

the parameter α does not influence the limit function of the Mehler-Heine formula.

As it is expected, this also occurs for the Sobolev case. However, the parameter m

has an essential impact on the asymptotics because ν = m − 1/2. In this way, the

Mehler-Heine formulae do not change for these Sobolev polynomials if we choose

any α > 1. However, changing m in this example, we obtain different Mehler-Heine

formulae for the even polynomials.

• Since ν = m − 1/2, being m a nonnegative integer, the Bessel functions of the first

kind can be expressed via trigonometric functions sin(x) and cos(x) as Fig. 23 shows.

Mathematica® often uses this type of simplifications. In this example, it can be

checked that

cos(2x)− 15cos(2x)

4x2 +
15sin(2x)

8x3 − 3sin(2x)
xp

πx3
= x−5/2J7/2(2x),

which is consistent with Theorem 2.2.

4.4. Two other cases. Comments and warnings.

The simplest case within the Freud weights corresponds to classical Hermite weight.

Thus, the authors of [19] consider the measure given by dµ(x) = e−x2

d x to illustrate their

results about the asymptotic behavior of the zeros of the orthonormal polynomials with

respect to the discrete Sobolev inner product
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( f , g)S =

∫ +∞

−∞
f (x)g(x)e−x2

d x +Mn f ( j)(0)g( j)(0). (4.1)

We know that the asymptotic behavior of the zeros is obtained from the corresponding

Mehler-Heine formula by the Hurwitz’s theorem. Since the above inner product is a partic-

ular case of (1.1), we could want to apply our program. Our first idea is to use the preloaded

case Generalized Freud. However, choosing m = 0 and α = 2 yields dµ = e−2x2

d x . This

subtle difference between both measures makes it impossible to use the preloaded case di-

rectly. Nevertheless, there is a simple solution — viz. one can choose the General case, then

symmetric measure, and introduce the key inputs as an = bn =
p

n. Another option is to

consider the relation

q̃n(x) = 21/4qn(
p

2x),

where qn are the orthonormal polynomials with respect to the inner product (4.1) and q̃n

are the orthonormal polynomials with respect to the Sobolev inner product

( f , g)S1
=

∫ +∞

−∞
f (x)g(x)e−2x2

d x + eMn f ( j)(0)g( j)(0), (4.2)

where eMn = Mn/2
j+1/2. Now one can use the preloaded case Generalized Freud, where we

set m = 0, α = 2, and when the general term of Mn is requested, we have to enter eMn.

As it is natural, both options lead to the same result. This occurs because the key inputs

for dµ(x) = e−2x2

d x are an =
p

n/2 and bn =
p

2n. Therefore, the limits in Theorem 2.2

coincide for both families.

Another case of interest is related to the Gegenbauer measure

dµ(x) =
�
1− x2
�α

d x , α > −1.

This can be viewed as a particular case of the Jacobi case when α = β . Hence, we select

the preloaded case Jacobi and choose either c = −1 or c = 1. On the other hand, since this

measure is symmetric we can first select General case, c = 0, and using the corresponding

sequences an and bn gives the Mehler-Heine formula.

It is convenient to warn about some aspects of the program:

• If α, β (Laguerre and Jacobi cases) or m (generalized Freud case) are large enough,

the limit functions in the corresponding Mehler-Heine formulae are very close to the

zero function in the uniform norm. Then, the plot is not useful, and Mathematica®

has problems with the plot construction and issues the warnings of the type “too small

to represent as a normalized machine number; precision may be lost.” This is not

a malfunction because the limit function and the coefficients are correctly obtained,

which are the main objectives of the program.

• To simplify the expression of the limit functions returned by the program we have

used the command FullSimplify in the symmetric cases (general case and generalized

Freud). In these situations, the simplification can take a substantial amount of time.

We can gain time removing this command, although the expression obtained for the

limit function can be enormous.
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4.5. Zeros

Although it is not the objective of this paper, we guess that the location of the zeros of

the orthonormal polynomials related to the inner product (1.1) is an interesting problem.

Let us explain how to use the program to locate zeros of these dSOP. First, we need some

theoretical results the proof of which is similar to [19, Section 4]. As usual we distinguish

between a symmetric and nonsymmetric measure µ.

4.5.1. Nonsymmetric measure

Proposition 4.1. The polynomial qn(x), n≥ 1, orthonormal with respect to (1.1), has n real

simple zeros, at most one of which is located outside of I.

In order to establish the asymptotic behavior of the zeros of qn we have to consider two

cases — viz. c = inf(I) and c = sup(I). The asymptotic result in the next statement is the

consequence of applying the Hurwitz’s theorem to the Mehler-Heine formula (2.8).

Proposition 4.2. Let j > 0 and si refer to the i-th positive zero of the function ϕc,νc , j,L
(z).

(a) Choose c = inf(I) and let yn,1 < yn,2 < · · · < yn,n be the zeros of the polynomial qn(x)

ordered in an increasing order. If n is large enough, then

(a1) If

0≤ L <
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then all zeros of qn(x) are located inside of I. Moreover,

lim
n→∞

bn,c(yn,i − c) = s2
i
, i ≥ 1.

(a2) If

fc(0) + fc( j) + 1

fc( j)− fc(0)
≤ L ≤ +∞,

we have

lim
n→∞

yn,1 = c, lim
n→∞

bn,c(yn,i − c) = s2
i−1, i ≥ 2.

Moreover, if

L >
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then yn,1 < c.

(b) Choose c = sup(I) and let yn,1 > yn,2 > · · ·> yn,n be the zeros of the polynomial qn(x)

ordered in a decreasing order. If n is large enough, then
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(b1) If

0≤ L <
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then all zeros of qn(x) are located inside of I. Moreover,

lim
n→∞

bn,c(c − yn,i) = s2
i
, i ≥ 1.

(b2) If
fc(0) + fc( j) + 1

fc( j)− fc(0)
≤ L ≤ +∞,

we have

lim
n→∞

yn,1 = c, lim
n→∞

bn,c(c − yn,i) = s2
i−1, i ≥ 2.

Moreover, if

L >
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then yn,1 > c.

Remark 4.2. If j = 0, then (1.1) is a standard inner product, so that all zeros of the corre-

sponding orthonormal polynomials are located in I . Under the notation of Proposition 4.2,

the following assertions hold:

(i) If c = inf(I) and yn,1 < yn,2 < · · · < yn,n are the zeros of the polynomial qn(x) ordered

in an increasing order, then

lim
n→∞

bn,c(yn,i − c) = s2
i , i ≥ 1.

(ii) If c = sup(I) and yn,1 > yn,2 > · · · > yn,n are the zeros of the polynomial qn(x)

ordered in a decreasing order, then

lim
n→∞

bn,c(c − yn,i) = s2
i , i ≥ 1.

4.5.2. Symmetric measure

In this case c = 0, I = (−ρ,ρ) with ρ > 0, so we have the Sobolev-type inner product

(2.12), i.e.

( f , g)S =

∫
f (x)g(x)dµ+Mn f ( j)(0)g( j)(0).

It is clear that for even j, the polynomials q2n+1 coincide with the standard polynomials

p2n+1. Analogously, for odd j we have q2n = p2n for all n. Thus, the Mehler-Heine for-

mulae also coincide as Theorem 2.2 shows. Therefore, we only consider two other cases

mentioned in (2.19)-(2.20). Applying the symmetrization process [2, 19], Theorem 2.2,

Proposition 4.2, and the Hurwitz’s theorem, we arrive at the following proposition.
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Proposition 4.3. Let j > 0, t i refer to the i-th positive zero of the function Φν,r,L(z), and t∗
i

to the i-th positive zero of the function Φ∗ν,r,L(z).

(a) For any even j, the polynomial q2n has 2n− 2 real simple zeros and at most 2 purely

imaginary zeros. Moreover, if n is large enough, then

(a1) If

0≤ L <
g(0) + g( j) + 1

g( j)− g(0)
,

the polynomial q2n has 2n real simple zeros. Denoting by y2n,1 < y2n,2 < · · · <
y2n,n the positive zeros of the polynomial q2n ordered in an increasing order, we

have

lim
n→∞

bn y2n,i = t i , i ≥ 1.

(a2) If
g(0) + g( j) + 1

g( j)− g(0)
< L ≤ +∞,

the polynomial q2n has 2n − 2 real simple zeros and exactly 2 purely imaginary

zeros. Denoting by y2n,1 and y2n,−1 the purely imaginary zeros and by y2n,2 <

y2n,3 < · · ·< y2n,n the positive zeros of the polynomial q2n ordered in an increasing

order, we have

lim
n→∞

y2n,1 = lim
n→∞

y2n,−1 = 0, lim
n→∞

bn y2n,i = t i−1, i ≥ 2.

If

L =
g(0) + g( j) + 1

g( j)− g(0)
,

then either q2n has exactly 2 purely imaginary zeros, and we have the above asymp-

totic behavior, or all zeros of q2n are real being y2n,1 < y2n,2 < · · · < y2n,n their

positive zeros with the asymptotic behavior

lim
n→∞

y2n,1 = 0, lim
n→∞

bn y2n,i = t i−1, i ≥ 2.

(b) For any odd j, the polynomial q2n+1 has 2n− 1 real and simple zeros, one of which is

located at the origin, and at most 2 purely imaginary zeros. If n is large enough, then

(b1) If

0≤ L <
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
,

the polynomial q2n+1 has 2n+1 real simple zeros. Denoting by y2n+1,1 < y2n+1,2 <

· · · < y2n+1,n the positive zeros of the polynomial q2n+1 ordered in an increasing

order, we have

lim
n→∞

bn y2n+1,i = t∗
i
, i ≥ 1.
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(b2) If
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
< L ≤ +∞,

the polynomial q2n+1 has 2n − 1 real simple zeros and exactly 2 purely imagi-

nary zeros. Denoting by y2n+1,1 and y2n+1,−1 the purely imaginary zeros and by

y2n+1,2 < y2n+1,3 < · · · < y2n+1,n the positive zeros of the polynomial q2n+1 or-

dered in an increasing order, we have

lim
n→∞

y2n+1,1 = lim
n→∞

y2n+1,−1 = 0, lim
n→∞

bn y2n+1,i = t∗i−1, i ≥ 2.

If

L =
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
,

then either q2n+1 has exactly 2 purely imaginary zeros, and we have the above

asymptotic behavior, or all zeros of q2n+1 are real being y2n+1,1 < y2n+1,2 < · · ·<
y2n+1,n their positive zeros with the asymptotic behavior

lim
n→∞

y2n+1,1 = 0, lim
n→∞

bn y2n+1,i = t∗
i−1

, i ≥ 2.

Remark 4.3. The case j = 0 can be considered analogously to Remark 4.2.

Remark 4.4. Taking into account the Hurwitz’s theorem, we note that the scaling sequence

bn,c (or bn) plays an important role in the description of asymptotic of the dSOP zeros.

4.5.3. Examples

In previous works we used numerical experiments to illustrate the asymptotic behavior

of the zeros — cf. [19] and the references therein. In this paper we unify the notation

(Theorems 2.1 and 2.2), so that we can proceed in a similar way. Now we want to show

how the algorithm and the program can be used in locating the zeros of these dSOP. In

order to illustrate Propositions 4.2 and 4.3, we present four examples but many more ones

can be shown if needed.

Example 4.1 (Jacobi case). We consider the inner product (1.1) with

dµ(x) = (1− x)−1/4(1+ x)2/3d x ,

and c = 1, j = 4, Mn = 107/(n+ 1)35/2, i.e.

( f , g)S =

∫ 1

−1

f (x)g(x)(1− x)−1/4(1+ x)2/3d x +
107

(n+ 1)35/2
f (4)(1)g(4)(1). (4.3)

In this situation, 1 = sup(I) and bn,1 = n2/2 [24]. Therefore, we apply the program by

choosing Preloaded cases → Jacobi and enter the data as above. The program returns (we

omit the coefficients di,1(L) and the plot of the limit function):



24 J.F. Mañas-Mañas and J.J. Moreno-Balcázar

Figure 25: Output the program for the example corresponding to the Jacobi case.

It is clear that we are able to apply Proposition 4.2 (b). Since f1(k) = 2k + α + 1 =

2k+ 3/4, we have

19

16
=

f1(0) + f1(4) + 1

f1(4)− f1(0)
< L =

15625

7× 25/12Γ

�
19
4

�2 ≈ 6.07853.

The term ( f1(0) + f1(4) + 1)/( f1(4)− f1(0)) can be computed by the program by writing

( f [0]+ f [ j]+1)/( f [ j]− f [0]) in the Command Window of Mathematica® after running the

program. Therefore, Proposition 4.2 (b2) provides the information about the asymptotic

behavior of the zeros of the dSOP with respect to (4.3). Thus, for n large enough, we have

yn,1 > 1 and

lim
n→∞

yn,1 = 1, yn,i ≈ 1−
s2
i

bn,1

= 1−
2s2

i

n2
, i ≥ 2.

To obtain approximations of the zeros yn,i, i ≥ 2, one only has to determine the zeros si

in some interval. For example, if we establish the first three zeros in the interval [0,6], we

can use the following Mathematica® command

NSolve[MH[j, x, α] == 0 && 0 < x < 6, x, WorkingPrecision -> 16],

thus obtaining

s1 =1.325920061278339,

s2 =3.244837348236775,

s3 =5.034929612268939.

As the result, for n= 50 we get the following approximations of the zeros yn,i , i = 2,3,4:

y50,2 ≈ 1− 2× 1.3259200612783392

502
= 0.998593548792880,

y50,3 ≈ 1− 2× 3.2448373482367752

502
= 0.991576824466790,
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y50,4 ≈ 1− 2× 5.0349296122689392

502
= 0.979719587039598.

Mehler-Heine asymptotics is a type of local asymptotic, so we obtain better approximations

for the zeros closer to point c. Since in this case c = 1, we get better approximations for

the zeros closer to 1.

Example 4.2 (Laguerre case). In this case we choose α = 3, j = 5, and Mn = 1/(n + 1),

which gives the Sobolev-type inner product

( f , g)S =

∫ ∞

0

f (x)g(x)x3e−x d x +
1

n+ 1
f (5)(0)g(5)(0). (4.4)

Noting that c = 0 = inf(I), we proceed similar to the Example 4.1. Thus, the program

returns

Figure 26: Output the program for the example corresponding to the Laguerre case.

Now we can apply Proposition 4.2 (a2) with L = +∞. Inasmuch as bn,0 = n [24], the

asymptotic behavior of the dSOP zeros of respect to (4.4) is

lim
n→∞

yn,1 = 0, yn,i ≈
s2
i

bn,0

=
s2
i

n
, i ≥ 2

with yn,1 < 0 for n large enough. First, we search for the zeros of the limit function in the

Mehler-Heine formula, say in the interval [0,8]. The command

NSolve[MH[j, x, α] == 0 && 0 < x < 8, x, WorkingPrecision -> 16]

returns

s1 =3.653924739560034,

s2 =5.533254604844355,

s3 =7.301999533325407,

and for n= 150 we have the following approximations of the zeros yn,i , i = 2,3,4:

y150,2 ≈
3.6539247395600342

150
= 0.089007773349126,

y150,3 ≈
5.5332546048443552

150
= 0.204112710146875,

y150,4 ≈
7.3019995333254072

150
= 0.355461314564563.
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Example 4.3 (Hermite case). Hermite weight function is a particular case of the gen-

eralized Freud weight function x2me−2|x |α on the real line. We choose m = 0, α = 2,

j = 8 (r = 4), M̃n = 1/(2560
p

2(n + 2)17/2) and arrive at the following Sobolev inner

product (4.2):

( f , g)S =

∫ +∞

−∞
f (x)g(x)e−2x2

d x +
1

2560
p

2(n+ 2)17/2
f (8)(0)g(8)(0). (4.5)

Continuing similar to the previous examples, we get

Figure 27: Output the program for the example corresponding to the Hermite case.

After that, we apply Proposition 4.3 (a) with g(k) = k − 1/4 and

128
p

2

85π
= L <

g(0) + g(4) + 1

g(4)− g(0)
=

9

8
.

Similar to the Jacobi case, the term (g(0) + g(4) + 1)/(g(4)− g(0)) can be computed after

the program start. Since bn =
p

2n, by Proposition 4.3 (a1) for sufficiently large n, all dSOP

zeros with respect to (4.5) are real, simple and

lim
n→∞

p
2ny2n,i = t i , i ≥ 1,

cf. [24]. In order to find the first positive zeros of the limit function, we use the command

NSolve[MH[j/2, x, ν] == 0 && 0 < x < 6.5, x, WorkingPrecision -> 16],

thus obtaining

t1 =0.607643840651074,

t2 =2.017034485993581,

t3 =3.600436437073820,

t4 =5.222669794289976.

Choosing n= 150, we obtain

y300,1 ≈
0.607643840651074p

300
= 0.035082333497132,

y300,2 ≈
2.017034485993581p

300
= 0.116453540345315,

y300,3 ≈
3.600436437073820p

300
= 0.207871294614471,

y300,4 ≈
5.222669794289976p

300
= 0.301530981162185.
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Unlike to Example 4.1, the Laguerre and Hermite weights are supported on unbounded

sets. Therefore, in order to get good approximations in Examples 4.2 and 4.3, we take n

bigger than in Example 4.1.

Example 4.4 (Nevai-Blumenthal case). If the measure µ is not explicitly given, Proposi-

tions 4.2 and 4.3 are even more interesting. For instance, in Subsection 4.1 we demon-

strated the program action for the Sobolev inner product

( f , g)S =

∫ 1

−1

f (x)g(x)dµ+
�
n2 − n+ 3
�

f (5)(1)g(5)(1) (4.6)

in (General case) with a measure from the Nevai-Blumenthal class M(0,1). The outputs

of the program are displayed in Figs. 12 and 13. Now, knowing that L = +∞, we apply

Proposition 4.2 (b2) thus obtaining

lim
n→∞

yn,1 = 1, lim
n→∞

n2

2
(1− yn,i) = s2

i−1, i ≥ 2,

where si is the i-th positive zero of the function ϕ1,1,5,∞(x). Furthermore, yn,1 > 1 for n

large enough. To illustrate this result, we compute the first three zeros by using the program

NSolve[MH[j, x, ν] == 0 && 0 < x < 6, x, WorkingPrecision -> 16]

and obtain

s1 =2.253003516051088,

s2 =4.077745620336094,

s3 =5.835148392017446.

Above, ν is the notation in the program for the term νc. In this example νc = ν1 = 1. Taking

n = 50, we arrive at the following approximations of the first dSOP zeros with respect to

(4.6):

y50,2 ≈ 1− 2× 2.2530035160510882

502
= 0.995939180125329,

y50,3 ≈ 1− 2× 4.0777456203360942

502
= 0.986697592524664,

y50,4 ≈ 1− 2× 5.8351483920174462

502
= 0.972760834594509.

In conclusion, we hope the program will be useful to obtain Mehler-Heine asymptotics for

dSOP in a simple and symbolic way and to help locate the zeros of these nonstandard poly-

nomials. As we have commented previously, the program is free and it can be downloaded

from the website https://w3.ual.es/GruposInv/Tapo/MHAS.nb.
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