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Abstract

This paper concerns the reconstruction of a scalar coefficient of a second-order elliptic

equation in divergence form posed on a bounded domain from internal data. This prob-

lem finds applications in multi-wave imaging, greedy methods to approximate parameter-

dependent elliptic problems, and image treatment with partial differential equations. We

first show that the inverse problem for smooth coefficients can be rewritten as a linear

transport equation. Assuming that the coefficient is known near the boundary, we study

the well-posedness of associated transport equation as well as its numerical resolution using

discontinuous Galerkin method. We propose a regularized transport equation that allow

us to derive rigorous convergence rates of the numerical method in terms of the order of

the polynomial approximation as well as the regularization parameter. We finally provide

numerical examples for the inversion assuming a lower regularity of the coefficient, and

using synthetic data.
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1. Introduction

Let Ω be a C6-smooth bounded domain of Rn, n = 2, 3, with boundary Γ. Let ν(x) be the

outward normal vector at x ∈ Γ, and d = supx,y∈Ω ‖x − y‖ be the diameter of Ω. We set, for

η ∈ (0, d), σ0 ∈W 2,∞(Ω), Ωη = {x ∈ Ω,dist(x,Γ) > η}, and 0 < k1 < k2,

Σ = {σ ∈W 2,∞(Ω); σ = σ0 in Ω \ Ωη, k1 ≤ σ, ‖σ‖W 2,∞(Ω) ≤ k2}.

Let g be fixed in H
7
2 (Γ), and satisfy

∫
Γ
gdx = 0. Then, according to the classical elliptic

regularity theory

div(σ∇u) = 0 in Ω, σ∂νu = g on Γ,

∫
Ω

uσdx = 0, (1.1)
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has a unique solution uσ ∈ H5(Ω) [1], and there exists a constant c = c(Σ,Ω) > 0 such that

‖uσ‖H5(Ω) ≤ c. (1.2)

The goal of this work is to study the following inverse problem (IP): Given σ0 and the

interior data uσ|Ω, to reconstruct the conductivity σ|Ω.

This inverse problem is of importance in many different scientific and engineering fields

including photoacoustic tomography, studies of effective properties of composite materials, and

approximation of parametric partial differential equations. Photoacoustic tomography is a

recent hybrid imaging modality that couples diffusive optical waves with ultrasound waves to

achieve high-resolution imaging of optical properties of biological tissues [2–7]. The inverse

problem (IP) appears in the second inversion, called quantitative photoacoustic tomography,

where the derived internal data is used to recover the optical coefficients of the sample [8, 9].

Motivated by the search for sharp bounds on the effective moduli of composites many researchers

have considered the problem of characterizing mathematically among all the gradient fields those

solving the equation (1.1) for some function σ within the set Σ. In the context of approximation

of parameter-dependent elliptic problems by greedy algorithms the inverse problem (IP) has

been considered with infinitely many interior data available [10]. Hence solving the inverse

problem with a single datum may reduce the dimensionality of the set of parameters used to

accurately approximate a targeted compact set of solutions [11].

Given σ0 and the interior data uσ|Ω, the inverse problem can be recasted as a linear steady

transport equation satisfied by σ ∈ Σ,

∇σ · ∇uσ + (∆uσ)σ = 0 in Ω.

The steady transport equation is one of the basic equations in mathematical physics. It is widely

used in fluid mechanics, for example to model mass transfer [12]. From the mathematical point

of view there are several results addressing the well-posdeness of the equation. In order to

briefly review some of these results we introduce suitable boundary conditions. To do so we

split the boundary of Γ into three disjoint parts, the inflow Γin, the outflow set Γout, and the

characteristic set Γ0, defined by

Γin = {x ∈ Γ : ∇uσ · ν < 0}, Γout = {x ∈ Γ : ∇uσ · ν > 0}, Γ0 = Γ \ (Γin ∪ Γout). (1.3)

Assuming that ∇uσ never vanishes in Ω and using the method of characteristics, one can easily

show that the system

∇σ · ∇uσ + (∆uσ)σ = 0 in Ω, σ = σ0 on Γin, (1.4)

admits a unique solution. The method of characteristics can not be applied when the set

of characteristic curves has a complex structure, for example when ∇uσ vanishes. In order

to overcome this difficulty, many works have considered the case where the lower order term

dominates the transport term. In this framework the theory of linear steady transport equations

becomes part of a more general theory of degenerate elliptic equations ( [13–15], see also Chapter

12 in [12] and references therein). Let κ > 0 be a fixed constant. When n = 3, and assuming

that the interior data uσ verifies

inf
x∈Ω
|∆uσ(x)| > κ > 0, (1.5)
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it was proved in [15], by using the vanishing viscosity method, that the system (1.4) admits a

weak solution in L2(Ω), satisfying

‖σ‖L2(Ω) ≤
1

κ
‖∇σ0 · ∇uσ + (∆uσ)σ0‖L2(Ω).

If, in addition, ∂Γin is a one-dimensional C1 manifold, then there is a unique weak solution

σ ∈ L2(Ω). However in general without geometrical assumptions on the characteristic set, the

system (1.4) may have other weak solutions. Indeed the problems of uniqueness and regularity

of solutions to the system (1.4) are difficult issues, most of the available results relate to the

case of multi-connected domains with isolated inflow boundary Γin [14,15]. In [16], the author

assuming that |∆uσ(x)| 6= 0 or |∇uσ(x)| 6= 0 in Ω has derived Lipschitz stability estimates for

the inversion.

Linear steady transport equations is also part of a general theory developed by Friedrichs

dealing with symmetric positive systems of first-order linear partial differential equations [17].

Recently, numerical methods based on discontinuous Galerkin methods have renewed interest in

Friedrichs systems [18–20]. In this settings the conditions required for existence and uniqueness

of solutions to the system are almost similar to the ones derived in [13–15].

Due the specificity of our equation (the lower order term is linked to the transport speed)

the condition (1.5) which is the minimal requirement for the existence of solutions in all the

presented variational approaches is stronger than assuming that ∇uσ does not vanish in Ω.

Furthermore, if the interior data is recovered with zero noise the existence of solution is in

fact guaranteed from the fact that the transport equation is originated from the elliptic system

(1.1). The uniqueness of solutions to the system (2.1) is established in [21] using elliptic unique

continuation properties of the transport speed ∇uσ. However, in applications, the internal

data uσ|Ω is usually measured with limited accuracy. Hence, studying the well-posedness of the

inverse problem (IP) when the measurements are noisy is of critical importance.

We aim in this paper to study the well-posedness of the inverse problem (IP) as well as its

numerical resolution. If the interior measurement is noisy, that is, only U δ ∈ H5(Ω) is available,

satisfying

‖Uδ − uσ‖H5(Ω) ≤ δ‖uσ‖H5(Ω),

∫
Ω

Uδdx = 0, (1.6)

with δ ∈ (0, 1) is small enough, could we construct σδ ∈ L2(Ω), solution to the transport

equation (1.4), with Uδ substituting uσ, that tends to σ ∈ Σ when the noise δ tends to zero?

This question is also related to the numerical approximation of the solution to the inverse

problem (IP).

Since in general a noisy data U δ does not belong to U :=
{
uσ ∈ H5(Ω) : σ ∈ Σ

}
, the

transport equation (2.1) with uσ substituted by U δ does not need to have a solution (see

example 2.4 in [9]). Therefore, it is necessary to find an adequate regularization method to

the linear equation (2.1). The vanishing viscosity method is a well known way to regularize

this type of equation, it consists in adding a second order term ε∆·, with ε is a small positive

parameter [21]. The regularized equation becomes then an elliptic one and the singularities of

targeted function σ may not be visible in the regularized solution. In this paper we propose

a first order regularization method based on an original regularization of the lower order term

that does not improve the regularity of the solution. We note that since the transport equation

(1.4) is solved in the weak L2 topology, the assumption on the regularity of σ, uσ, and the noisy

data U δ may be significantly reduced. Indeed, we considered such a large smoothness to ease



4 F. TRIKI AND T. YIN

the presentation of our theoretical stability estimates. Note that the regularity of the domain

as well as the regularity of the data are chosen to be large to ease the stability and convergence

analysis. The obtained results can be easily applied to less regular domains and boundary data

by using interpolation inequalities.

The paper is organized as follows. In section 2, we study the stability of the solution of

the inverse problem (IP) with respect to the noise in the internal measurement. We prove the

existence and uniqueness of solution to the regularized transport equation (2.4) in Theorem

2.1. We also show the convergence of the regularized solution to the targeted conductivity

distribution in Theorem 2.2. Section 3 is devoted to the numerical approximation of the solution

using discontinuous Galerkin method. We derive error estimates of the numerical approximation

in Theorem 3.1. We finally provide in section 4 several numerical tests based on synthetic data,

and assuming a lower regularity of the conductivity distribution.

2. Stability Estimates

In this section we study the well-posdeness of the regularized transport equation using a

variational approach developed in [17]. We introduce the following modified transport equation

2∇γ · ∇uσ + γ∆uσ = 0 in Ω and γ = γ0, (2.1)

for γ ∈ H1(Ω) and γ0 =
√
σ0. We know from the system (1.1) that γ =

√
σ is a solution of

(2.1). We deduce from [5,21] that
√
σ is indeed the unique solution.

Let U δ ∈ H5(Ω) be given, and satisfying (1.6). Our first objective in this section is to derive

for δ > 0, small enough an approximate solution of the following noisy transport equation

2∇γδ · ∇Uδ + γδ∆U
δ = 0 in Ω and γ = γ0, (2.2)

Since γδ = γ0 and Uδ are given in ΩCη , we can modify the behavior of U δ in order to have

a right hand term in L2(Ω), and σ0∂νU
δ = g on Γ, with g is chosen such that the associated

inflow and outflow boundaries be well-separated, namely,

dist(Γin,Γout) := min
(x,y)∈Γin×Γout

|x− y| > 0. (2.3)

This condition is necessary and sufficient to define traces of functions belonging to the graph

space of the steady transport unbounded operator in [18]

L2(|g|; Γ) :=

{
v measurable on Γ :

∫
Γ

|g|v2ds(x) <∞
}
.

Since the transport equation (2.2) does not fall within the classical variational framework to

prove the existence, uniqueness of solutions, we introduce an auxiliary problem indexed by

ε > 0 which should be small enough.

Fix ε ∈ (0, 1), and define the regularized system corresponding to (2.2) as follows

β · ∇γ + µεγ = 0 in Ω (2.4)

where β = ∇Uδ and µε = 1
2∆U δ + ε. Due to the regularity of U δ ∈ H5(Ω), the speed β lies in

C1,1(Ω), with ‖∇βi‖L∞(Ω)2 ≤ Li < ∞ for i = 1, 2, β,i being the components of β. We deduce

from (1.6) that the Lipschitz constant L := maxi=1,2 Li only depends on g, Σ and Ω.
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Next we prove the existence and uniqueness of (2.4) with inflow boundary condition

γ = γ0 on Γin.

Before that, we introduce the Graph space V := {v ∈ L2(Ω)|β · ∇v ∈ L2(Ω)} equipped with

the natural scalar product

(v, w)V := (v, w)L2(Ω) + (β · ∇v, β · ∇w)L2(Ω), ∀v, w ∈ V,

and the norm ‖v‖V := ((v, v)V )1/2. It follows that V is a Hilbert space and the triple

{V,L2(Ω), V ′} is a Gelfand triple [18]. Denote

L2(|β · n|,Γ) :=

{
v is measurable on Γ|

∫
Γ

|β · ν|v2ds <∞
}

the trace space. Lemma .1 in the appendix allows us to define traces of functions belonging to

the graph space V and to use an integration by parts formula. In addition, for a real number

r, we define its positive and negative parts respectively as

r⊕ :=
1

2
{|r|+ r}, x	 :=

1

2
{|r| − r}.

We consider the weak form of (2.4) as follows:

Find γδε ∈ V such that a(γδε , w) =

∫
Γ

(β · ν)	γ0w ds for all w ∈ V, (2.5)

where

a(v, w) :=

∫
Ω

(β · ∇v + µεv)w dx+

∫
Γ

(β · ν)	vw ds.

Theorem 2.1. Let g be fixed in H
7
2 (Γ) satisfying

∫
Γ
gdx = 0 and condition (2.3). Then there

exists a unique solution γδε ∈ V to the system (2.4) for ε ∈ (0, 1).

Proof. We follow the proof in [18, 20] and trace out the dependence of constant in terms of

the regularized parameter ε. The proof proceeds in four steps. Further c > 0 denotes a generic

constant that only depends on Σ, g and Ω.

We first prove that (2.5) admits at most one solution. For all v ∈ V , we obtain from

integration by parts that

a(v, v) = ε

∫
Ω

v2 dx+

∫
Γ

[
1

2
(β · ν) + (β · ν)	

]
v2 ds

≥ ‖v‖2L2(Ω)ε+
1

2

∫
Γ

|g|v2 ds, (2.6)

which implies the desired uniqueness. To prove the existence, we introduce an auxiliary problem:

Find v′ ∈ V such that a(v′, w) = −a0(γ0, w) for all w ∈ V, (2.7)

where

a0(v, w) :=

∫
Ω

(β · ∇v + µεv)w dx.
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The map V 3 w 7→ a0(γ0, w) ∈ R is bounded in L2(Ω). Due to the regularity of γ0, the function

f := β · ∇γ0 + µεγ0 lies in L2(Ω) ⊂ V ′. Then if (2.7) admits a solution v′ ∈ V , we can obtain

that γδε = v′ + γ0 ∈ V satisfies (2.5) which gives the existence.

Hence it remains to prove that (2.7) is well-posed. The uniqueness of (2.7) also follows from

(2.6). Set V0 := {v ∈ V : v|Γin
= 0}, and consider the following problem:

Find v0 ∈ V0 such that; a0(v0, w) =

∫
Ω

fw dx for all w ∈ L2(Ω). (2.8)

If (2.8) is well-posed and let v0 ∈ V0 be its unique solution, we have that v0 ∈ V and a(v0, w) =

a0(u,w) for all w ∈ V . It means that v0 is a solution of (2.7). It remains to prove that (2.8) is

well-posed.

Here we shall apply the Banach-Nečas-Babuška (BNB) Theorem .1 with X = V0 and Y =

L2(Ω). In fact V0 is a Hilbert space since V0 is closed in V and L2(Ω) is a reflexive Banach

space. The right-hand side in (2.8) is a bounded linear form in L2(Ω) and a0 ∈ L(V0×L2(Ω),R)

since

|a0(v, w)| ≤
(

1 +
1

2
‖∆U δ‖L∞(Ω)

)
‖v‖V ‖w‖L2(Ω), ∀(v, w) ∈ X × Y.

It remains to verify the conditions (.1) and (.2) of the BNB Theorem.

(i). Proof of condition (.1). For v ∈ V0, we set

Sv := sup
06=w∈L2(Ω)

a0(v, w)

‖w‖L2(Ω)
.

Similar as (2.6), we can get

a0(v, v) ≥ ε‖v‖2L2(Ω) for v ∈ V0.

Then for 0 6= v ∈ V0,

‖v‖L2(Ω) ≤
1

ε

a0(v, v)

‖v‖L2(Ω)
≤ 1

ε
Sv.

On the other hand,

‖β · ∇v‖L2(Ω) = sup
06=w∈L2(Ω)

∫
Ω

(β · ∇v)w dx

‖w‖L2(Ω)

= sup
06=w∈L2(Ω)

a0(v, w)−
∫

Ω
( 1

2∆Uδ + ε)vw dx

‖w‖L2(Ω)

≤ Sv + (
1

2
‖∆U δ‖L∞(Ω) + 1)‖v‖L2(Ω)

≤
(

1 + (
1

2
‖∆Uδ‖L∞(Ω) + 1)ε−1

)
Sv.

Therefore,

‖v‖2V = ‖v‖2L2(Ω) + ‖β · ∇v‖2L2(Ω)

≤

[
ε−2 +

(
1 + (

1

2
‖∆U δ‖L∞(Ω) + 1)ε−1

)2
]
S2
v ≤ cε−2S2

v .
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Then, we can take Csta := cε, whence we infer condition (.1).

(ii). Proof of condition (.2). Let w ∈ L2(Ω) be such that a0(v, w) = 0 for all v ∈ V0. Taking

v ∈ C∞0 (Ω) first we get µεw − div(βw) = 0 in Ω. Hence, β · ∇w = µεw − (divβ)w ∈ L2(Ω)

implying that w ∈ V . Then we have, for all v ∈ V0∫
Γ

(β · ν)vw =

∫
Ω

[(β · ∇v)w + (β · ∇w)v + (∇ · β)vw] dx

= a0(v, w) = 0.

Since Γin and Γout are well-separated, there exist two functions ψ± ∈ C∞(Ω) such that [18]

ψout + ψin = 1 in Ω, ψin|Γout
= 0, ψout|Γin

= 0.

Taking v = ψoutw ∈ V0, we obtain that

0 =

∫
Γ

(β · ν)ψoutw2 ds =

∫
Γin

(β · ν)w2 ds =

∫
Γout

(β · ν)⊕w2 ds,

which further implies that w = 0 on Γout. Finally, we observe that

0 =

∫
Ω

[µε − div(βw)]w dx

= ε

∫
Ω

w2 dx+
1

2

∫
Γ

(β · ν)w2 ds

= ε‖w‖2L2(Ω).

Therefore, w = 0 in Ω, which completes the proof. �

The unique solution of (2.1) and the regularized one (2.4), satisfy the following stability

estimate.

Theorem 2.2. Let g be fixed in H
7
2 (Γ) satisfying

∫
Γ
gdx = 0 and condition (2.3). Then, there

exist c > 0 and s ∈ (0, 1
2 ), that only depends on σ, g, η, and Ω such that∫

Ωη

|(γδε)2 − γ2|1/2 dx ≤ c(1 +
δ

ε
)(ε+ δ)s, (2.9)

where γ and γδε are the solutions respectively to (2.1) and (2.4). If in addition |∇uσ| does not

vanish in Ωη, the inequality (2.9) holds with s = 1
2 .

Proof. Further c > 0 denotes a generic constant that only depends on σ, g, η, and Ω. We

deduce from equations (2.1) and (2.4) that ξ = γδε − γ solves

β · ∇ξ + µεξ = ∇(uσ − U δ) · ∇γ +

(
1

2
∆(uσ − Uδ)− ε

)
γ in Ω and ξ = 0 on Γin.

Using the variational formulation for the transport equation, and the fact that σ ∈ Σ, we find

ε‖ξ‖L2(Ω) ≤ c‖Uδ − uσ‖H1(Ω) + c‖Uδ − uσ‖H2(Ω) + cε.

Combining the inequality above with estimate (1.6), we get

‖ξ‖L2(Ω) ≤ c
(
δ

ε
+ 1

)
. (2.10)
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Since σ ∈ Σ, we immediately deduce from (2.10) the following bound

‖γδε‖L2(Ω) ≤ c
(
δ

ε
+ 1

)
. (2.11)

Recall that γ2 and (γδε)2 solve respectively the following systems:

div
(
(γδε)2∇Uδ

)
= −2ε(γδε)2 in Ω and (γδε)2 = σ0 on Γ,

and

div(γ2∇uσ) = 0 in Ω and γ2 = σ0 on Γ,

Let sgn0 be the sign function defined on R by: sgn0(t) = −1 if t < 0, sgn0(0) = 0 and sgn0(t) = 1

if t > 0. Note that

div
(
|(γδε)2 − γ2|∇Uδ

)
= sgn0((γδε)2 − γ2)div

(
(γδε)2 − γ2)∇Uδ

)
= sgn0((γδε)2 − γ2)

[
div
(
γ2∇(uσ − Uδ)

)
− 2ε(γδε)2

]
.

We get by integrating by parts that

‖
(
(γδε)2 − γ2

)
|∇U δ|2‖L1(Ω) =

∫
Ω

∣∣div(|(γδε)2 − γ2|∇U δ)
∣∣ |Uδ| dx

≤
∫

Ω

(∣∣div
(
γ2∇(uσ − Uδ)

)∣∣+ 2ε(γδε)2
)
|Uδ| dx.

Thus,

‖
(
(γδε)2 − γ2

)
|∇uσ|2‖L1(Ω)

≤ ‖((γδε)2 − γ2)(|∇uσ|2 − |∇U δ|2)‖L1(Ω) + c‖uσ − Uδ‖H2(Ω) + c(ε+ δ).

We obtain that

‖|
(
(γδε)2 − γ2

)
|∇uσ|2‖L1(Ω) ≤ c(ε+ δ)(1 +

δ2

ε2
). (2.12)

Denote Ωtη := {x ∈ Ωη : |∇uσ(x)| ≥ t}. When t tends to zero we expect |Ωη \ Ωtη| to

approach zero. The rate of decay depends on how does |∇uσ(x)| vanish at its critical points.

The proof of this technical lemma is given in Appendix 4.

Lemma 2.1. Let Ωtη := {x ∈ Ωη : |∇uσ(x)| ≥ t}. Then the following inequality holds

0 ≤ |Ωη \ Ωtη| ≤ ctα, (2.13)

where c > 0 and α > 0 only depend on σ,Ω, η and g.

Then, we get∫
Ωtη

|γ2 − (γδε)2|1/2 dx

≤ t−1

∫
Ωtη

|γ2 − (γδε)2|1/2|∇uσ| dx ≤ t−1

∫
Ω

|γ2 − (γδε)2|1/2|∇uσ| dx

≤ t−1|Ω|1/2
(∫

Ω

|γ2 − (γδε)2||∇uσ|2 dx
)1/2

≤ ct−1

(
(ε+ δ)(1 +

δ2

ε2
)

)1/2

,



Inverse conductivity Problem with Internal Data 9

and ∫
Ωη\Ωtη

|γ2 − (γδε)2|1/2 dx

≤ |Ωη\Ωtη|1/2‖γ2 − (γδε)2‖L1(Ω) ≤ C|Ωη\Ωtη|1/2
(
δ

ε
+ 1

)
≤ ctα2

(
δ

ε
+ 1

)
.

Hence ∫
Ωη\Ωtη

|γ2 − (γδε)2|1/2 dx

≤
∫

Ω\Ωtη
|γ2 − (γδε)2|1/2 dx+ +

∫
Ωtη

|γ2 − (γδε)2|1/2 dx

≤ c

[
t−1

(
(ε+ δ)(1 +

δ2

ε2
)

)1/2

+ t
α
2

(
δ

ε
+ 1

)]

≤ c
[
t−1(ε+ δ)1/2 + t

α
2

](δ
ε

+ 1

)
.

Minimizing the right-hand side with respect to t > 0, for fixed δ and ε in (0, 1), we find that

the minimum is reached at t = (ε+ δ)
1

α+2 , and verifies

t−1(ε+ δ)1/2 = t
α
2 .

Then, we get ∫
Ωη

|γ2 − (γδε)2|1/2 dx ≤ c(1 +
δ

ε
)(ε+ δ)s, s =

α

2(α+ 2)
, (2.14)

which finishes the proof of the Theorem when Ωη \ Ωtη is not empty. �

Assuming now that |∇uσ| does not vanish in Ωη. Regarding the regularity of |∇uσ|, Ωη \Ωtη
is empty for t > 0 small enough, that is Ωη = Ωtη. We then deduce from (2.14) that the

inequality (2.9) is valid with s = 1
2 .

Remark 2.1. Notice that ϕ →
∫

Ω
|ϕ|1/2dx defines a complete metric on L1/2(Ω). In fact it

is only a quasi-norm since it does not satisfy the triangle inequality. Meanwhile the Hölder

inequality still holds [22].

Next, we study the regularity of the unique weak solution γδε of the regularized transport

equation (2.4). The main difficulty of the theory of the boundary value problem for the transport

equation in the case of nonempty set ∂Γin is that a solution may develop singularities at ∂Γin

(See for instance example 12.2.1 in [12]).

Theorem 2.3. Let g be fixed in H
7
2 (Γ) satisfying

∫
Γ
gdx = 0 and condition (2.3), and let

γδε ∈ V be the unique solution to (2.4) for ε ∈ (0, 1). Assume in addition that uσ is a convex

function. Then there exists c0 > 0 that only depends on Σ, g and Ω such that if δ
ε ∈ (0, c0), γδε

lies in H1(Ω), and it satisfies

‖γδε‖H1(Ω) ≤ cε−1, (2.15)

where c > 0 only depends on Σ, g and Ω.



10 F. TRIKI AND T. YIN

Proof. Differentiating the regularized equation (2.4), we obtain that ζ = ∇γδε satisfies the

following Friedirich system

(∂kU
δIn)∂kζ +

(
(
1

2
∆Uδ + ε)In +H(Uδ)

)
ζ = −1

2
γδε∇∆U δ,

∂i denotes the partial derivative with respect to xi, In is identity matrix in Rn, H(U δε ) is the

Hessian matrix of U δε .

Since the function uσ is convex, we deduce from (1.6) that there exists a constant c0 > 0,

that only depends on Σ, g and Ω, such that

H(U δ) ≥ − δ

2c0
In.

Hence for δ
ε ∈ (0, c0), we have

εIn +H(U δ) ≥ ε

2
.

The variational necessary condition for the existence and uniqueness of solution to the

Friedirich system is then satisfied, and we have [18]

‖ζ‖(L2(Ω))n ≤ cε−1‖γδε‖L2(Ω).

Combining the previous estimate with (2.11), gives the desired result. �

Remark 2.2. Note that the assumption on the convexity of uσ immediately implies ∆uσ ≥ 0

since ∆uσ = tr(H(uσ)).

3. Discontinuous Galerkin Method

In this section, we discretize the system (2.5) by a discontinuous Galerkin (DG) method [20].

Let T = {Th}h be a family of conforming quasi-uniform triangulations such that Ω = ∪τ∈Thτ ,

τi ∩ τj = ∅ for τi, τj ∈ Th, i 6= j. Set hτ = diam(τ) and h = maxτ∈Th hτ . For an integral k and

τ ∈ Th, let Pk(τ) be the set of all polynomials on τ of degree at most k. We define the discrete

space

Vh := {v ∈ L2(Ω) : v|τ ∈ Pk(τ) ∀ τ ∈ Th}.

We split the set of all edges Eh into the set E ih of interior edges of Th and the set E∂h of boundary

edges of Th such that Eh = E ih ∪ E∂h . For an e ∈ E ih, we define the averages and jumps of v ∈ Vh
by

[v]e = lim
ρ→0+

[v(x− ρne)− v(x+ ρne)] ,

and

{v}e =
1

2
lim
ρ→0+

[v(x− ρne) + v(x+ ρne)] ,

respectively, where ne is one of the normal unit vectors to e. For e ∈ E∂h , ne denotes the outward

unit normal.
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We consider the discrete problem:

Find γε,h ∈ Vh such that ah(γδε,h, wh) =
∑
e∈E∂h

∫
e

(β · ne)	f ′wh ds for all wh ∈ Vh, (3.1)

where the the upwind DG bilinear form ah is given by

ah(γδε,h, wh) :=
∑
τ∈Th

∫
τ

[
µεγ

δ
ε,hwh + (β · γδε,h)wh

]
dx+

∑
e∈E∂h

∫
e

(β · ne)	γδε,hwh ds

−
∑
e∈Eih

∫
e

(β · ne)[γδε,h]{wh} ds+
∑
e∈Eih

∫
e

η|β · ne|[γδε,h][wh] ds.

In the following, we assume that ε > 0 is sufficiently small. We first examine the consistency

and discrete coercivity of the upwind DG bilinear form ah. Assume that there is a partition

PΩ of Ω into disjoint polyhedra such that γδε ∈ V∗ := V ∩ H1(PΩ). We set V∗h = V∗ + Vh.

This assumption implies that γδε ∈ L2(e) for all e ∈ Eh. The space H1(PΩ) can be replaced

by H1/2+ε(PΩ) or W 1,1(PΩ) for a weakly regularity assumption where 0 < ε < 1/2. From

Lemma 2.14 in [20], we know that for u ∈ V∗ and all e ∈ E ih, (β · ne)[u] = 0 a.e. on e. Define

τc = max{‖µε‖L∞(Ω), Lβ}, βc = ‖β‖L∞(Ω)2 and the following strong norms

|||v|||2 := τ−1
c

∑
τ∈Th

‖v‖L2(τ) +
1

2

∑
e∈E∂h

∫
e

|β · ne|v2 ds+
∑
e∈Eih

∫
e

η|β · ne|[v]2 ds,

and

|||v|||2∗ := |||v|||2 + βc
∑
τ∈Th

‖v‖2L2(∂τ)

for v ∈ V∗h. For the consistency of ah we refer to Lemma 2.27(i) in [20] and we conclude the

coercivity in the following lemma.

Lemma 3.1. For all wh ∈ Vh, there exists a constant Cc independent of h, ε, wh such that

ah(wh, wh) ≥ Ccε|||wh|||2. (3.2)

Proof. It follows from the coercivity of the bilinear form a and the fact that (β · ne)[wh]

vanishes across interior interfaces that

ah(wh, wh) ≥ min{1, cτcε/4}|||wh|||2,

which yields the desired result since ε is sufficiently small. �

The discrete coercivity of ah on Vh implies the well-posedness of the discrete problem (3.1).

Let πh be the L2-orthogonal projection operator onto Vh. Then we have (see Theorem 2.30

in [20])

Lemma 3.2. For (v, wh) ∈ V∗ × Vh, there exists a constants Cb > 0 independent of h, ε, v, wh
such that

|ah(v − πhv, wh)| ≤ Cb|||v − πhv|||∗|||wh|||. (3.3)
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Now we state the main result of error estimates.

Theorem 3.1. Let γδε , γ
δ
ε,h be the unique solution of (2.5) and (3.1), respectively. Assume that

γε ∈ Hk+1(Ω). Then we have∣∣∣∣∣∣γδε − γδε,h∣∣∣∣∣∣ ≤ Cε−1hk+1/2‖γδε‖Hk+1(Ω). (3.4)

Moreover, there exists a constant 0 < s < 1/2 such that∫
Ω

|γδ − γδε,h|1/2 dx ≤ C
(
ε−1hk+1/2‖γε‖Hk+1(Ω) + (1 +

δ

ε
)(ε+ δ)s

)
, (3.5)

Here, C > 0 is a constant independent of γδ, γδε , h, ε, δ.

Proof. Following Theorem 2.31 in [20] we know∣∣∣∣∣∣γδε − γδε,h∣∣∣∣∣∣ ≤ (1 + C1ε
−1)
∣∣∣∣∣∣γδε − γδε,h∣∣∣∣∣∣∗ ≤ Cε−1

∣∣∣∣∣∣γδε − γδε,h∣∣∣∣∣∣∗.
Using Lemma 1.58 and 1.59 in [20] we obtain that∣∣∣∣∣∣γδε − γδε,h∣∣∣∣∣∣∗ ≤ Chk+1/2‖γδε‖Hk+1(Ω),

which implies (3.4). The estimate (3.5) follows from (2.9), (2.15), (3.4) and the triangle in-

equality. �

Given σ0 and the interior data U δ, our algorithm for the reconstruction of σ|Ω is summarized

as follows:

Step 1. Choose an appropriate ε ∈ (0, 1);

Step 2. Generate the data β = ∇U δ and µε = 0.5∆Uδ + ε (see Example 2 in Section 4);

Step 3. Solve the variational problem (12) using DG method and obtain the numerical solution

γδε,h, i.e., the reconstruction of γ =
√
σ in Ω.

4. Numerical Examples

In this section, we present several numerical examples for the reconstruction of σ that

demonstrate the accuracy and efficiency of the proposed inversion algorithm. Although we

assume Ω being a C6-smooth bounded domain in theoretical analysis, here Ω is set to be

[0, 1] × [0, 1] for simplicity. Since only ∇uσ is used in the inversion we do not impose the

condition
∫

Ω
uσdx = 0 in the rest of this section. All of the numerical tests were obtained by

means of Matlab numerical implementations. We always choose the parameter η = 100 used

in discontinuous Galerkin method described in Section 3. The numerical errors Error and the

relative L2-error RError are calculated in accordance with the expressions

Error =

∫
Ω

|γ − γε,h|1/2 dx, and RError =
‖γ − γε,h‖L2(Ω)

‖γ‖L2(Ω)
,

respectively.

Example 4.1. Let the exact uσ in Ω be given by

uσ = e0.5−x1+(x2−0.5)2 ,
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and the exact conductivity is

σ = e3x1−0.5−(x2−0.5)2 ,

see Fig. 4.1. The triangular partition of Ω is fixed with meshsize h = 0.0295. The numerical

errors for different k and ε are presented in Fig. 4.2. For fixed small ε, the numerical errors,

dominated by the errors arising from discontinuous Galerkin approximation, decay as k increase.

On the other hand, for fixed large k, the numerical errors are dominated by the term εs with

s = α
2(α+2) given in (2.14). The results demonstrate the convergence of numerical errors with

respect to ε with order nearly O(ε1/2) which corresponds to the exact theoretical rate since

|∇uσ| does not vanish here (Theorem 2.2). The numerical reconstructions for k = 3 are shown

in Fig. 4.3 with the corresponding relative L2-errors for different choices of ε.

(a) uσ (b) γ

Fig. 4.1. Example 1. The exact uσ (a) and γ (b).

Fig. 4.2. Example 1. Numerical errors of the reconstruction for different k and ε.

(a) ε = 10−1 (b) ε = 10−3 (c) ε = 10−5

Fig. 4.3. Example 1. The reconstruction of γ for different ε with relative errors RError=4.31 × 10−2,

4.45× 10−4 and 4.46× 10−6 in (a,b,c), respectively.

Example 4.2. In this example, we consider the reconstruction of the conductivity function
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given by

σ(x1, x2) = q(3(2x1 − 1), 3(2x2 − 1)),

where

q(x1, x2) = 1 + 0.3(1− x1)2e−x
2
1−(x2+1)2 − (

1

5
x1 − x3

1 − x5
2)e−x

2
1−x

2
2 − 1

30
e−(x1+1)2−x2

2 ,

see Fig. 4.4. Set g = ex1+x2 − (e2 − 1)/2 on Γ satisfying
∫

Γ
g dx = 0. The solution uσ and

|∇uσ| (produced by discontinuous Galerkin method) are presented in Fig. 4.5. For simplicity,

let the exact measurement data be the polynomial coefficients of the discontinuous Galerkin

approximation of uσ in P k0(Th), k0 ≥ 2. In other words, in each triangular element, we have at

least (k0 + 1)(k0 + 2)/2 measurement points to produce the measurement data. The triangular

partition of Ω is fixed with meshsize h = 0.0295. It is known that on each triangular element

τ , the uσ can be approximated by

uσ =

N∑
j=1

ujφj ,

with φj ∈ Pk(τ) being the basis function and uj being the point measurements. The the terms

β = ∇uσ and µε = 0.5∆uσ + ε are calculated through

β =

N∑
j=1

uj∇φj , µε = 0.5

N∑
j=1

uj∆φj + ε.

Choosing k0 = 1 will result into poor reconstruction since in this case ∆uσ = 0 in each element.

We choose the parameter k = k0. The reconstruction results are presented in Figs. 4.6 and

4.7 and the corresponding numerical errors are displayed in Fig. 4.8. The accuracy limitation

at a level of approximately 10−2 corresponds to the number of measurement points and the

approximations of ∇uσ and ∆uσ.

Fig. 4.4. Example 2. The exact γ.

(a) uσ (c) |∇uσ|
Fig. 4.5. Example 2. Exact data uσ and |∇uσ|.
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(a) ε = 10−1 (b) ε = 10−3 (c) ε = 10−5

Fig. 4.6. Example 2. The reconstruction of γ when k0 = 2 for different ε with relative errors

RError=1.71× 10−2, 2.53× 10−3 and 2.50× 10−3 in (a,b,c), respectively.

Example 4.3. Next, we consider the reconstruction of conductivity function discussed in

Example 2 from noised data

U δ = uσ(1 + δξ),

where δ is the noise level and ξ is an independent and uniformly distributed random variable

generated between -1 and 1. Fig. 4.9 displays the perturbated data U δ and ∇Uδ with δ = 10%

random noise. In addition, less point measurements are taken under a triangular partition of

Ω with meshsize h = 0.0589 and we choose k0 = 2. The reconstruction results from noised

measurement with level δ = 5% are shown in Figs. 4.10 and 4.11 which demonstrate the high

efficiency and robustness of the proposed inversion algorithm. Fig. 4.12 displays the convergence

of numerical errors with respect to δ + ε.

Example 4.4. Finally, we consider the reconstruction of a piecewise constant conductivity, see

(a) ε = 10−1 (b) ε = 10−3 (c) ε = 10−5

Fig. 4.7. Example 2. The reconstruction of γ when k0 = 3 for different ε with relative errors

RError=1.66× 10−2, 4.04× 10−4 and 3.64× 10−4 in (a,b,c), respectively.

Fig. 4.8. Example 2. Numerical errors of the reconstruction for different k0 and ε.



16 F. TRIKI AND T. YIN

(a) U δ (c) |∇U δ|
Fig. 4.9. Example 3. Perturbated data data Uδ and |∇Uδ| with 10% random noise.

(a) ε = 0.1 (b) ε = 0.06 (c) ε = 0.01

Fig. 4.10. Example 3. The reconstruction of γ from noised measurements when k0 = 2, δ = 5% for

different ε with relative errors RError=2.24×10−2, 1.71×10−2 and 1.22×10−2 in (a,b,c), respectively.

(a) ε = 0.1 (b) ε = 0.06 (c) ε = 0.01

Fig. 4.11. Example 3. The reconstruction of γ from noised measurements when k0 = 2, δ = 10% for

different ε with relative errors RError=2.46×10−2, 2.04×10−2 and 1.74×10−2 in (a,b,c), respectively.

Fig. 4.12. Example 3. Numerical errors of the reconstruction for different noise level δ and ε.

Fig. 4.13. For simplicity, the exact uσ in Ω is set to be

uσ = cos(x1 − 0.5)ex2 .
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The reconstruction from perturbated point measurement with 10% random noise presented in

Fig. 4.14 shows the efficiency of the proposed method.

Fig. 4.13. Example 4. The exact γ.

(a) ε = 0.1 (b) ε = 0.06 (c) ε = 0.01

Fig. 4.14. Example 4. The reconstruction of γ from noised measurements when k0 = 2, δ = 10% for

different ε with relative errors RError=3.79×10−2, 2.88×10−2 and 2.29×10−2 in (a,b,c), respectively.

Appendix A

Lemma .1 (Traces and integration by parts [18, 20]). The trace operator

γ : C0(Ω) 3 v 7→ γ(v) := v|∂Ω ∈ L2(|β · ν|, ∂Ω)

extends continuously to V , meaning that there is Cγ such that, for all v ∈ V ,

‖γ(v)‖L2(|β·n|,∂Ω) ≤ Cγ‖v‖V .

Moreover, the following integration by parts formula holds true: For all v, w ∈ V ,∫
Ω

[(β · ∇v)w + (β · ∇w)v + (∇ · β)vw] dx =

∫
∂Ω

(β · ν)γ(v)γ(w)ds.

Theorem .1 (The Banach-Nečas-Babuška Theorem [23]). Let X be a Banach space and

let Y be a reflexive Banach space. Let a ∈ L(X × Y,R) and let f ∈ Y ′. Then the problem:

Find u ∈ X such that a(u,w) = 〈f, w〉Y ′,Y for all w ∈ Y.

is well-posed if and only if:

(i). There is Csta > 0 such that

Csta‖v‖X ≤ sup
0 6=w∈Y

a(v, w)

‖w‖Y
, ∀v ∈ X. (.1)

(ii). For all w ∈ X,

(∀v ∈ X, a(v, w) = 0) =⇒ (v = 0). (.2)
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Proof. [Lemma 2.1] Further c > 0 is a constant that only depends on g, σ, Ω, and eventually

on η. Since uσ is a solution to the system (1.1), |∇uσ| is a Mukenhoupt weight. Indeed there

exists a contant p > 1 depending only on g, σ and Ω such that the following inequality (Theorem

1.1 in [24]) (
1

|Br(x)|

∫
Br(x)

|∇uσ|dy

)(
1

|Br(x)|

∫
Br(x)

|∇uσ|−
1
p−1 dy

)p−1

≤ c, (.3)

holds for all r ∈ (0, η), and x ∈ Ωη.

The following behavior is related to the unique continuation properties of solutions to elliptic

equations in a divergence form (Corollary 3.1 in [3]).

crβ ≤ 1

|Br(x)|

∫
Br

|∇uσ|dy, (.4)

where β ≥ 0 is a constant that only depends on g, σ and Ω. The constants β and p > 1 are

related to the vanishing order of ∇uσ in Ωη. Combining inequalities (.3) and (.4), we obtain∫
Br(x)

|∇uσ|−
1
p−1 dy ≤ cr

−β+n
p−1 , (.5)

for all r ∈ (0, η), and x ∈ Ωη.

Fix now r = η
2 . There exist N ∈ N and xj , 1 ≤ j ≤ N, that only depend on η and Ω

such that Ωη ⊂ ∪Nj=1Br(xj). Let (φj)1≤j≤N be a partition of unity subordinate to the covering

∪Nj=1Br(xj). We deduce from (.5), the following estimates∫
Ωη

|∇uσ|−
1
p−1 dy =

N∑
j=1

∫
Ωη

|∇uσ|−
1
p−1φjdy

≤
N∑
j=1

‖φj‖L∞(Ωη)

∫
Br(xj)

|∇uσ|−
1
p−1 dy

≤ c. (.6)

Recall Ωη \Ωtη = {x ∈ Ωη : |∇uσ| < t}. Assuming that Ωη \Ωtη is not empty, we infer from

(.6) the following inequality

t−
1
p−1 |Ωη \ Ωtη| ≤

∫
Ωη\Ωtη

|∇uσ|−
1
p−1 dy ≤

∫
Ωη

|∇uσ|−
1
p−1 dy ≤ c,

which in turn leads to

0 ≤ |Ωη \ Ωtη| ≤ ctα,

with α := 1
p−1 > 0. �
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