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Abstract. In the recent years, researchers in many fields, including meteorology,
economics, sociology, psychology, and epidemiology, have shown a keen interest in
the analysis and modeling of wrapped data. This motivates the development of new
wrapped distributions and related models. In this paper, a simple and new wrapped
model based on the Poisson-Lindley distribution is developed. Many of its properties
are obtained, such as probability mass and cumulative distribution functions, survival
and hazard rate functions, and probability generating function. The estimation of the
model parameter is investigated by the maximum likelihood method. Test and evalu-
ation statistics are also considered to assess the performance of the distribution among
the most frequently wrapped discrete probability models using three different circular
practical data sets.
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1 Introduction

In the current era, many diverse statistical fields are emerging, such as biostatistics, en-
vironmental statistics, geostatistics, statistical mechanics, statistical computing and man-
agement statistics. However, very little attention is paid to the directional statistics that
deal with direction axes or rotations. Such directional statistics include the direction of
the earth’s magnetic pole, the direction of flight of a bird or the orientation of an animal,
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the arrival times of patients in an emergency clinic, incidences of a disease throughout
the year, and the number of tourists (daily or monthly) in a city within a year, where
the calendar is regarded as a one-year clock, the daily wind directions, the ocean cur-
rent directions, departure directions of animals, direction of bone-fracture planes, and
orientation of bees in a beehive after stimuli, etc.

The directional statistics mentioned above have many innovative landscapes, both in
terms of modeling and statistical treatment. For this purpose, researchers have to adopt
different ways to obtain circular distributions. One of them is wrapping a linear distri-
bution around the unit circle. In this regard, [11] is the pioneer of wrapped distributions.
Since this innovation, a lot of work has been done in this field. Some of them include the
wrapped normal (WN) distribution, wrapped Cauchy (WC) distribution, wrapped Pois-
son distribution by [7], wrapped exponential and Laplace distributions by [6], wrapped
lognormal, logistic, Weibull, and extreme-value distributions by [14], wrapped skew
Laplace distribution by [8], wrapped geometric distribution, wrapped gamma distribu-
tion by [13], wrapped variance gamma distribution by [1], wrapped binomial distribution
by [4], wrapped log Kumaraswamy distribution by [9], discrete wrapped exponential and
negative binomial distributions by [17, 18] and, recently, [10] introduced the wrapped
Lindley distribution. As a matter of fact, the existing wrapped distributions literature
lacks the discrete wrapped distributions. Moreover, probability functions of the present-
ed wrapped models are also not in the closed form and, ultimately, mathematically, are
not amenable.

Now, let us briefly recall the methodology for the construction of a new wrapped
distribution. Let X be a discrete random variable with integer values. Then, the cor-
responding wrapped distribution is the distribution of the following random variable:
Xw = 2πX (mod2πm), which has the support {2πr/m, r=0,1,.. . ,m−1}. We now sup-
pose that X follows the Poisson-Lindley distribution with parameter θ > 0 introduced
by [15] and characterized by the following probability mass function (pmf):

f (x;θ)=
θ2(x+θ+2)

(1+θ)x+3
, x=0,1,2,··· . (1.1)

It is of particular interest because of the following notable properties: tractable proba-
bility functions, unimodality, overdispersion, infinite divisibility and increasing hazard
rate function (hrf). Also, in some circumstances, it provides a suitable alternative to the
Poisson, geometric and negative binomial distributions (in particular, it is known to have
smaller skewness and kurtosis than the negative binomial distribution). Also, the mod-
el in Eq. (1.1) was derived based on an interesting property of the linear exponential
family of single parameter distributions (see [15]). It contains some interesting proper-
ties, including approximation to the negative binomial and Hermite distributions, and
has a wide range of application in many fields, such as medicine, engineering, ecology
and genetics (see [16]). Further, this distribution can be represented as a mixture of geo-
metric with parameter 1/(1+θ) and negative binomial with parameters 2 and 1/(1+θ),
where the mixing proportions are θ/(1+θ) and 1/(1+θ), respectively. More details on
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the Poisson-Lindley distribution can be found in [15] and [3]. Hence, by the use of the
Poisson-Lindley distribution, we aim to construct a new wrapped discrete distribution
with attractive properties. We thus define the wrapped Poisson-Lindley (WPL) distribu-
tion as the distribution of the related random variable Xw and we set Xw∼WPL(m,θ). As
a starting point, the pmf of Xw is given by

PXw(r)=P

(

Xw =
2πr

m

)

=
+∞

∑
k=−∞

f (r+km;θ), r=0,1,··· ,m−1.

The present paper investigates mathematical and practical properties of the WPL distri-
bution. Other motivational factors include the following ones. First, unlike the other
wrapped probability models, the WPL distribution has a closed form structure of pmf,
cumulative distribution function (cdf), hrf and survival function (sf). Secondly, so far
none of the researchers have studied applications of discrete wrapped probability mod-
els. Last but not least, parameter estimation is straightforward and efficient. A final
motivation is that the pmf of the WPL distribution can be represented as a mixture of
wrapped geometric model and wrapped negative binomial model, where the latter is
not proposed yet in literature.

The paper is outlined as follows. Section 2 provides the main functions of the W-
PL distribution. Section 3 is devoted to estimation of the parameters via the maximum
likelihood method, and a simulation study to show the numerical efficiency of the ob-
tained estimates. Section 4 deals with the application on three lifetime data sets. Section
5 concludes the results obtained.

2 Main functions

2.1 Probability mass function

Here, we express the main functions related to the WPL distribution. We begin with the
corresponding pmf. By incorporating Eq. (1.1) in the above expression, we have

PXw(r)=
∞

∑
k=−∞

f (r+km;θ)=
∞

∑
k=0

θ2(r+km+θ+2)

(1+θ)r+km+3
, r=0,1,.. .m−1.

After some algebra, we obtain

PXw(r)=
+∞

∑
k=−∞

f (r+km;θ)=
+∞

∑
k=0

θ2(r+km+θ+2)

(1+θ)r+km+3

=
θ2

(1+θ)r+3

[

(r+θ+2)
+∞

∑
k=0

{

1

(1+θ)m

}k

+
m

(1+θ)m

+∞

∑
k=0

k

{

1

(1+θ)m

}k−1
]

=
θ2

(1+θ)r+3

[

(r+θ+2)
(1+θ)m

(1+θ)m−1
+

m

(1+θ)m

(1+θ)2m

[(1+θ)m−1]2

]
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a) pmf of the WPL when m = 31
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Figure 1: Linear representation for the pmf of the WPL distribution for the indicated values.

=
θ2(1+θ)m

(1+θ)r+3[(1+θ)m−1]2

{

(r+θ+2)[(1+θ)m−1]+m
}

.

Also, the pmf of the WPL distribution can be represented as a mixture of wrapped geo-
metric (WG) distribution with parameter 1/(1+θ) and wrapped negative binomial (WN-
B) distribution with parameters 2 and 1/(1+θ), where the mixing proportions are θ/(1+
θ) and 1/(1+θ), respectively. Noting that both WG(1/(1+θ)) and WNB(2,1/(1+θ)) are
perfect pmfs and the sum of each is one. Further, one can check that

m−1

∑
r=0

θ2(1+θ)m

(1+θ)r+3[(1+θ)m−1]2

{

(r+θ+2)[(1+θ)m−1]+m
}

=1.

Also, by denoting Pr=PXw(r), the following recursive relation between probabilities holds

Pr+1(1+θ)(m+(2+r+θ)((1+θ)m−1))=(m+(3+r+θ)((1+θ)m−1))Pr.

Now, let

am(θ)=
θ2(1+θ)m−3

[(1+θ)m−1]2
{(θ+2)[(1+θ)m−1]+m} , bm(θ)=

θ2(1+θ)m−4

(1+θ)m−1
.

Then, using those equalities, the pmf of the WPL distribution can be rewritten as

PXw(r)=
1

(1+θ)r
(am(θ)+bm(θ)r(1+θ)) , r=0,1,2,.. .m−1. (2.1)

Figures 1 and 2 illustrate the pmf of the WPL distribution for various values of the param-
eters, and with linear and circular representations, respectively. Various modes, intensity
of the peaks and increasing-decreasing structures can be observed.
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Figure 2: Circular representation for the pmf of the WPL distribution for the indicated values.

2.2 Cumulative distribution function

The above letting, as mentioned earlier, also helps us to calculate some of its important
properties, such as the cdf which usually calculates the failure probabilities before a spe-
cific number, say r, and for r=0,1, .. .,m−1, it has the following form:

F(r)=P(Xw ≤ r)=
r

∑
k=0

PXw(k)=
r

∑
k=0

(

am(θ)
1

(1+θ)k
+bm(θ)

k

(1+θ)k−1

)

= am(θ)
r

∑
k=0

1

(1+θ)k
+bm(θ)

r

∑
k=0

k

(1+θ)k−1

= am(θ)

{

1+θ−(1+θ)−r

θ

}

+bm(θ)

{

(1+θ)1−r{(1+θ)r+θ[(1+θ)r−1−r]−1}
θ2

}

. (2.2)

After some algebra, we obtain

F(r)=
1

[(1+θ)m−1]2
(1+θ)−r+m−3

{

1−(1+θ)m+(1+θ)1+r
(

−1−2θ+mθ−θ2

+(1+θ)2+m
)

+θ(−m−(3+r+θ)[(1+θ)m−1])

}

.

Figures 3 and 4 present some graphics of the cdf of the WPL distribution for various
values of the parameters, and with linear and circular representations, respectively. We
see that the cdf is concave with various inclinations depending on the values of x and
the parameters. Unit spirals of various forms are observed in the circular representation.
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Figure 3: Linear representation for the cdf of the WPL distribution for the indicated values.
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Figure 4: Circular representation for the cdf of the WPL distribution for the indicated values.

From both linear and circular representations of the cdf of the WPL distribution, it is ob-
vious that the convergence is sharp to 1 for smaller values of θ, i.e., as θ→0, as compared
to larger values of θ. In the case of the linear representation, it is just linearly increas-
ing. However, for polar form it moves in an anticlockwise direction and approaches to 1.
Moreover, we see that F(0)=0 and F(m−1)=1.

2.3 Survival and hazard rate functions

Similarly, another important reliability characteristic is the sf which usually calculates the
probabilities beyond a certain number r and it is expressed as S(r)= 1−F(r), hence we
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Figure 5: Linear representation of the sf of the WPL distribution for the indicated values.
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Figure 6: Circular representation of the sf of the WPL distribution for the indicated values.

have

S(r)=1− 1

[(1+θ)m−1]2
(1+θ)−r+m−3

{

1−(1+θ)m

+(1+θ)1+r
(

−1−2θ+mθ−θ2+(1+θ)2+m
)

+θ(−m−(3+r+θ)[(1+θ)m−1])

}

. (2.3)

Other important characteristics also include the hrf. It is usually defined as

h(r)=
PXw(r)

S(r)
.
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Figure 7: Linear representation of the hrf of the WPL distribution for the indicated values.
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Figure 8: Circular representation of the hrf of the WPL distribution for the indicated values.

So, for the WPL distribution, it can be expressed by combining the already obtained ex-
pressions for PXw(r) and S(r). Figures 5 and 6 present some graphics of the sf of the WPL
distribution for various values of the parameters, and with linear and circular represen-
tations, respectively. We can see that the sf converges sharply to 0 for smaller values of
θ, i.e., as θ→0, whereas for larger values of θ, the sf decreases linearly. However, for the
polar form, it moves in a clockwise direction and approaches to 0.

Figures 7 and 8 display graphics for the hrf of the WPL distribution for various val-
ues of the parameters, and with linear and circular representations, respectively. Various
forms of shapes are observed (decreasing, increasing, convex and concave shapes), en-
suring the great flexibility of the related model and motivating the use of the WPL model
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in a data analysis setting.

2.4 On the probability generating function

If Xw ∼WPL(m,θ), then the probability generating function of the random variable Xw is
expressed as

GXw(t)=E(tXw)=
m−1

∑
r=0

t
2πr
m P

(

Xw =
2πr

m

)

=
m−1

∑
r=0

t
2πr
m

[

am(θ)
1

(1+θ)r
+bm(θ)

r

(1+θ)r−1

]

= am(θ)
m−1

∑
r=0

(

t
2π
m

1+θ

)r

+bm(θ)t
2π
m

m−1

∑
r=0

r

(

t
2π
m

1+θ

)r−1

.

Thus, after some algebra, we get

GXw(t)=am(θ)
1+θ−(1+θ)1−mt2π

1+θ−t
2π
m

+bm(θ)t
2π
m
(m−1)(1+θ)2−mt2π−m(1+θ)3−mt2πt−

2π
m +(1+θ)2

(1+θ−t
2π
m )2

. (2.4)

From GXw(t), one can deduce several important measures on Xw, as the rth descending
moment given by µ∗

r =E[Xw(Xw−1) . . .(Xw−r+1)]=GXw (t)
(r) |t=1. For instance, by taking

r=1, we get the mean of Xw as

E(Xw)=
1

mθ(1+θ)4 [(1+θ)m−1]2

×2π
{

−m2θ2+(1+θ)(2+θ)[(1+θ)m−1]2−mθ [(1+θ)m−1](1+θ(2+m+θ))
}

.

The variance and other related measures can be expressed in a similar way and they
remain available upon reader request.

3 Parameter estimation with inference

3.1 Maximum likelihood method

Let Xw1
,Xw2 ,. . .,Xwn be a random sample drawn identically and independently from the

WPL distribution with observed values 2πr1/m,2πr2/m,. . .,2πrn/m, assuming that m is
known in advance (this point will be discussed later from the practical point of view).
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Table 1: Simulation study for the MLE θ̂ of the WPL distribution, assuming m=5.

θ=0.5025 θ=0.9856
n Bias Variance MSE Bias Variance MSE
15 0.0400 0.1463 0.1464 0.0632 0.2393 0.2417
25 0.0165 0.0350 0.0349 0.0619 0.1041 0.1074
50 0.0153 0.0134 0.0172 -0.0097 0.0435 0.0432

150 0.0133 0.0048 0.0172 0.0134 0.0161 0.0165
350 0.0115 0.0047 0.0098 0.0230 0.0071 0.0076
500 0.0106 0.0024 0.0062 0.0205 0.0057 0.0064

θ=1.0132 θ=11.2315
n Bias Variance MSE Bias Variance MSE

15 0.0729 0.2187 0.2219 1.12643×107 7.9302×1014 7.9302×1014

25 0.0591 0.1377 0.1398 76431.9 1.4161×1014 1.4603×1014

50 0.0518 0.0626 0.0647 2.68391 62.9337 69.5078
150 0.0297 0.0199 0.0205 1.6266 12.8332 15.3509
350 0.0288 0.0075 0.0067 0.5632 4.2654 4.5400
500 0.0212 0.0052 0.0056 0.5137 2.6486 2.8860

Then, by using the representation in Eq. (2.1), the corresponding log-likelihood function
is given by

ln[Lm(θ)]=−ln(1+θ)
n

∑
i=1

ri+
n

∑
i=1

ln(am(θ)+bm(θ)(1+θ)ri). (3.1)

As shown below, the maximum likelihood estimate (MLE) θ̂ of θ can then be uniquely
determined by solving the partial differentiate of Eq. (3.1) equal to 0 with respect to θ:

− 1

1+θ

n

∑
i=1

ri+
n

∑
i=1

am(θ)′θ+[bm(θ)′θ(1+θ)+bm(θ)]ri

am(θ)+bm(θ)(1+θ)ri
=0,

where (φm(θ))
′θ = ∂φm(θ)/∂θ. Since θ̂ has no closed form, it will be computed by using

the NMaximized command of Mathematica 11.0. For a large enough n, the distribution
of θ̂ can be approximated by an univariate normal distribution with mean θ and variance
I(θ)−1, where I(θ)=−E

(

∂2 ln[Lm(θ)]/∂θ2|θ=θ̂

)

.

3.2 Simulation study

In this section, we investigate the behavior and performance of the MLE discussed in
the section above for a finite sample size of n. Random observations are generated by
using the computational package Mathematica 10.0. We consider the following different
model parameters: θ=0.5025, 0.9856, 1.0132 and 11.2315 assuming m=5 to carry out the
simulation study and the process was repeated 1000 times by going from small to large
sample sizes n = 15, 25, 50, 150, 350 and 500. The simulated results are given in Table
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1. We observe from Table 1 that the agreement between theory and practice improves
as the sample size n increases. Mean square error (MSE) and variance of the θ̂ suggest
that the estimate is consistent as the MSE and variance are decreasing when the sample
size increases. Thus, the maximum likelihood method performs quite well in estimating
the model parameters of the WPL distribution by using the NMaximized command of
Mathematica 11.0.

4 Competing models, evaluating tests and applications

In this section, we study three data sets ranging from lifetime perspective to participation
aspects. The sources of data sets will be mentioned.

4.1 Competing models

Due to count data modeling, we have decided to compare some wrapped discrete models
along with non wrapped discrete models. For this purpose, we examine the three com-
peting models, which include the wrapped geometric (WGD) model studied by [5], the
Poisson-Lindley (PL) model proposed and investigated by [15, 16] and the well known
Poisson model.

4.2 Evaluating tests

We use various discrimination criterion to model the circular data, which are especially
highly recommended for testing the significance of goodness-of-fit in circular data sce-
narios. These statistics range from the log-likelihood function to information criterion
coupled with some goodness-of-fit tests. For a brief introduction of these test statistics,
let k denote the number of parameters to be fitted, Θ̂ be the MLEs of Θ, n denote the
number of observations, m denote the number of classes, zi = F(xi) and xi, i= 1,2,.. . ,n,
be the ordered observations. Hence, the considered criteria are as follow: Akaike infor-
mation criterion AIC=2k−2ℓ(Θ̂), Bayesian information criterion BIC=klog(m)−2ℓ(Θ̂),
corrected Akaike information criterion AICc=AIC+2k(k+1)/(m−k−1), Hannan-Quinn
Information criterion HQIC=−2ℓ(Θ̂)+2klog(log(m)) and consistent Akaike information
criterion CAIC=−2ℓ(Θ̂)+2km/(m−k−1). The best model is recognized with the min-
imum values of these criteria. Moreover, let r1,r2,. . .,rn be i.i.d. random variables with a
cdf F(r) on r=0,1,.. . ,m−1. Similar to fit issue on the real line, we wish to test the assumed
model for the given data, i.e., H0 : F(r)= F0(r), where F0(r) is a specified cdf. However,
one can broadly classify the goodness-of-fit tests into three categories: i) the empirical
cdf method ii) the successive points or ”spacings” gaps method and iii) the χ2 statistic.
The spacings tests are the only general class of goodness-of-fit tests that can be used as an
alternative to the χ2 test. For this reason, the χ2 along with Kolmogorov-Smirnov or the
Cramér-von Mises’s tests are not appropriate tests for the circular data since their values
depend on the choice of the origin. So, in order to select an appropriate model, we use
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Kuiper’s (V∗), modified version of Kolmogorov-Smirnov (KS), with its p-value, and Wat-
son (U∗2) tests which are particularly for circular data sets. The mathematical expression
of such tests are given by

KS=max

{

i

m
−zi,zi−

i

m

}

,

V∗=
√

mV

(

1+
0.155√

m
+

0.24

m

)

,

where V is expressed as

V=max

(

zi−
i

m

)

−min

(

zi−
i−1

m

)

+
1

m
.

Similarly Watson’s test statistic is given by

U2∗=
(

U2− 0.1

m
+

0.1

m2

)(

1+
0.8

m

)

,

where

U2=
m

∑
i=1

(

zi−∑
m
i=1zi

m
− 2i−1

2m
+

1

2

)2

+
1

12m
.

Vuong Test: Chi-square approximation in the regard of the likelihood ratio test
statistic is valid only for testing restrictions on the parameters of a statistical model (i.e.,
H0 and H1 are nested hypotheses). However, when models are non-nested, we can not
use the likelihood ratio tests for model comparison. In this scenario, the Vuong test is
useful for non-nested models. [19] proposed a likelihood ratio-based statistic for testing
the null hypothesis for competing models that are equally close to the true data gener-
ating process against the alternative model that is closer. For the details of the above
mentioned tests, the readers may be directed to [7] and [19].

4.3 Practical applications

In order to assess the suitability of the proposed model, we consider different competing
models and apply them to three real life data sets that describe the direction in degrees
around the unit circle. These data sets are, first of all, converted into floor radians. While
doing so, the maximum value of floor radians is 6. In this regard, the first example deals
with the turtle egg laying procedure, which is perfectly at random and in any direction
around the unit circle. In this procedure, the maximum angle that turtles attain is 350
degrees in a certain direction. The same is true with wind data direction showing a maxi-
mum value of 350 degrees. However, the data set that represents the arrival directions of
low mu (as measurement unit) showers of cosmic rays displays a maximum angle of 356
degrees. These factors clearly aid in determining a maximum floor radian, i.e., 6 radians,
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D���-I  Descriptive  Statistics

Circular Variance = 0.502

Circular SD = 1.1864

Circular Dispersion = -0.5487

Skewness = 0.0072

Kurtosis = 1.4153

Mean Direction = 0.6312

Mean Length = 0.4947

Theoratical  Descriptive   Statistics

Circular Variance = 0.5123

Circular SD = 1.1984

Circular Dispersion = -0.2792

Skewness = -0.7551

Kurtosis = -0.2602

Mean Direction = 0.4876

Mean Length = 1.3730

Data-I on directional movements of 76 turtles

Figure 9: Circular graphic for data set I.

Table 2: MLEs and goodness-of-fit statistics of data set I.

Distribution θ̂ U2∗ V2∗ KS p-value

WPL 0.9709 0.1142 1.4627 0.3630 0.3148

WGD 0.3786 0.1147 1.4531 0.3611 0.3144

PL 1.0683 0.1357 1.5428 0.3737 0.2822

PD 1.3815 0.1538 1.5983 0.4093 0.1913

Table 3: Vuong test statistics of data set I.

WPL- WGD(p-value) WPL- PL (p-value) WPL- PD

5.6176(0.000) 12.7710 (0.000) 0.9688(indecisive)

implying that m=7 according to the distribution domain. So the turtle egg laying/wind
direction/cosmic rays showering data in the converted floor radians data indicate that
the above data sets are not affected by any external factors, so the movements are all
around the unit circle. However, if some external factors affect the above phenomenon,
the movements of the turtles, wind directions and arrival directions of mu showering of
cosmic rays become interrupted and these movements become more focused on certain
directions, which seems to be impossible when nature works. Because these data sets are
typically available in terms of measurement angles around the unit circle, we must first
convert them from degrees to floor radians using the formula π data /180 before finding
the MLEs and conducting the analysis. Again, it is necessary to mention that MLEs are
determined by using NMaximized command of Mathematica 11.0.

Example 4.1. data set I. It is observed that directional data in two and/or three dimen-
sions, usually arise quite frequently in many natural and physical sciences, such as biol-
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Table 4: Log likelihood (l) and information criteria for data set I.

Distribution −l AIC AICC BIC HQIC CAIC

WPL 120.732 243.464 243.518 245.795 244.396 243.518

WGD 121.005 244.01 244.064 246.341 244.941 244.064

PL 122.242 246.484 246.538 248.815 247.416 246.538

PD 126.451 254.901 254.955 257.232 255.833 254.955

Table 5: MLEs and goodness-of-fit statistics of data set II.

Distribution θ̂ U2∗ V2∗ KS p-value

WPL 0.2899 0.0056 0.6544 0.0835 0.9999

WGD 0.0931 0.0056 0.6568 0.0843 0.9998

PL 0.6157 1.1614 0.0572 0.1666 0.9901

PD 2.6122 1.0821 0.0572 0.1619 0.9929

ogy, medicine, ecology, geology, etc. The following measures are the directional move-
ments or orientations of 76 turtles after laying eggs. The data contain the measurements
in degrees clockwise from north with observations 8, 38, 50, 64, 83, 98, 204, 257, 9, 38, 53,
65, 88, 100, 215, 268, 13, 40, 56, 65, 88, 103, 223, 285, 13, 44, 57, 68, 88, 106, 226, 319, 14, 45,
58, 70, 90, 113, 237, 343, 18, 47, 58, 73, 92, 118, 238, 350, 22, 48, 61, 78, 92, 138, 243, 27, 48,
63, 78, 93, 153, 244, 30, 48, 64, 78, 95, 153, 250, 34, 48, 64, 83, 96, 155, 251. This data set was
reported by [7]. Analysis of the converted floor radians is given in Figure 9.

Analysis of data set I: Table 2 portrays that the proposed model is the strong competitor
of the first data set, with least values of Kupier, Watson and KS test statistics. According
to the Vuong test statistics given in Table 3, the proposed model is the only suitable choice
for such data set. However, in the WPL-PD case, decision can not be made on the basis of
the Vuong test, but the other goodness-of-fit statistics strongly suggest the suitability of
the proposed model. Moreover, our findings are consolidated by the information criteria
statistics which also indicate that the proposed model is a suitable model for such data
sets (see Table 4). The circular representations of the estimated cdfs of the compared
distributions are given in Figure 10 that shows agreement of the obtained results.

Example 4.2. data set II. The second data measure the wind directions in degrees at
Gorleston England, between 11 a.m. and 12 noon on Sundays in 1968, for all of the four
seasons with observations: 50, 120, 190, 210, 220, 250, 260, 290, 290, 320, 320, 340, 0, 20,
40, 60, 160, 170, 200, 220, 270, 290, 340, 350, 10, 10, 20, 20, 30, 30, 40, 150, 150, 150, 170, 190,
290, 30, 70, 110, 170, 180, 190, 240, 250, 260, 260, 290, 350. This data set was first reported
by [12]. Analysis of the converted floor radians is given by Figure 11.

Analysis of data set II: Table 5 portrays that the proposed model is the strong competitor
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Figure 10: Circular representation of competing cdfs for data set I.
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Data-II  Descriptive  Statistics

Circular Variance = 0.9138

Circular SD = 2.2143

Circular Dispersion = 109.8020

Skewness = 0.1792

Kurtosis = 0.0368

Mean Direction = -1.0030

Mean Length = 0.0861

Theoratical  Descriptive  Statistics

Circular Variance = 0.8863

Circular SD = 2.0854

Circular Dispersion = -19.9472

Skewness = -0.0204

Kurtosis = -0.0657

Mean Direction = -0.9730

Mean Length = 0.1136

Data-II on wind directions in degrees

Figure 11: Circular graphic for data set II.

of the WGD model for this data set, by exhibiting equal values of Kupier, Watson and KS
test statistics. On the other side, the Vuong test statistics given in Table 6 indicate that the
WGD model is one of the suitable choices for such data set, while the proposed model has
the least values of the information criteria statistics and thus depicts that the proposed
model is the least loss of information model (see Table 7). The circular representations of
the estimated cdfs of the compared distributions are given in Figure 12 which shows a
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Table 6: Vuong test statistics of data set II.

WPL- WGD (p-value) WPL- PL(p-value) WPL- PD(p-value)

-3.9567 (0.3425) 7.6960(0.0000) 3.9415(0.0000)

Table 7: Log likelihood (l) and information criteria for data set II.

Distribution −l AIC AICC BIC HQIC CAIC

WPL 94.4784 190.957 191.042 192.849 191.675 191.042

WGD 94.425 190.85 190.935 192.742 191.568 190.935

PL 102.226 206.452 206.537 208.344 207.17 206.537

PD 103.465 208.929 209.014 210.821 209.647 209.014
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Figure 12: Circular representation of competing cdfs for data set II.

confirmation of the numerical results given above.

Example 4.3. data set III. The third data measure the arrival directions of low showers of
cosmic rays and the coordinate system is declination and right Ascension. This data set
was reported by [2]. The data consist of the following observations in degree: 315, 198,
99, 50, 86, 221, 0, 14, 63, 176, 185, 207, 221, 230, 243, 347, 342, 311, 293, 284, 216, 207, 144,
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Data-III on arrival directions of low mu showers of cosmic

Theoratical  Descriptive  Statistics

Circular Variance = 0.8547

Circular SD = 1.9643

Circular Dispersion = -11.3420

Skewness = -0.0387

Kurtosis = -0.0868

Mean Direction = -1.0577

Mean Length = 0.1452

Data-III  Descriptive  Statistics

Circular Variance = 0.9025

Circular SD = 2.1577

Circular Dispersion = 7.4866

Skewness = 0.1190

Kurtosis = -0.1183

Mean Direction = -0.7347

Mean Length = 0.0974

Figure 13: Circular graphic for data set III.

Table 8: MLEs and goodness-of-fit statistics of data set III.

Distribution θ̂ U2∗ V2∗ KS p-value

WPL 0.3409 0.0094 0.7211 0.1065 0.9998

WGD 0.1058 0.0074 0.6920 0.1104 0.9998

PL 0.6244 0.0583 1.1692 0.1726 0.9852

PD 2.5570 0.0599 1.1047 0.1738 0.9839

149, 77, 41, 27, 14, 5, 41, 36, 50, 63, 77, 77, 113, 153, 176, 203, 216, 252, 279, 288, 311, 320,
342, 356, 347, 347, 342, 338, 329, 293, 284, 261, 252, 257, 261, 261, 252, 230, 230, 216, 212,
207, 194, 158, 117, 99, 95, 14, 18, 27, 23, 50, 63, 77, 167, 176, 185, 194, 221, 216, 230, 234, 248,
279, 297, 324, 234, 185, 162, 144, 144, 108, 104, 86, 77, 68, 63, 27, 95, 99, 122, 140, 144, 171,
176, 185, 198, 216, 216, 234, 324, 311, 293, 275, 266, 207, 203, 212, 198, 140, 117, 117, 86, 68,
32, 14, 59, 68, 68, 72, 86, 104, 212, 153, 216, 342, 338, 9, 230, 221, 203, 198, 99, 86, 68, 45.

Figure 13 presents the circular graphics of the data.

Analysis of data set III: Table 8 shows that the proposed model is the strong competitor
of the WGD model for this data set. Moreover, the Vuong test statistics in Table 9 indicate
that the proposed model is the only suitable choice for such data set, with strong suitabil-
ity to the WGD model. The proposed model is much better than the PL and PD models,
and this result is confirmed by Table 10. The circular representations of the estimated
cdfs of the compared distributions are given in Figure 14 that shows agreement with the
preceding numerical results.
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Table 9: Vuong test statistics for data set III.

WPL- WGD (p-value) WPL- PL (p-value) WPL- PD (p-value)

46.1951(0.0000) 15.7814 (0.0000) 0.9702(indecisive)

Table 10: Log likelihood (l) and information criterion for data set III.

Distribution −l AIC AICC BIC HQIC CAIC

WPL 284.437 572.874 572.956 578.882 572.094 572.956

WGD 286.2673 576.535 576.617 582.542 575.755 576.617

PL 305.6431 613.286 613.313 616.29 614.507 613.313

PD 288.1666 578.333 578.36 581.337 579.554 578.36
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Figure 14: Circular representation of competing cdfs for data set III.

5 Conclusion

In this paper, we have discussed a new circular distribution resulting from wrapping the
Poisson-Lindley distribution on the nonnegative integers around the circle. It is called
the wrapped Poisson-Lindley (WPL) distribution. The probability mass, cumulative dis-
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tribution, survival and probability generating functions of the WPL distribution admit
explicit forms. Applications of the WPL model have been performed to three different
circular data sets, with favorable results for the proposed WPL model.
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