
J. Math. Study
doi: 10.4208/jms.v54nx.21.0x

Vol. 54, No. x, pp. 1-8
xx 2021

Domination in Generalized Cayley Graph of
Commutative Rings

K. Selvakumar1, M. Subajini1 and S. Pirzada2,*

1 Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli,
Tamil Nadu, India.
2 Department of Mathematics, University of Kashmir, Hazratbal, Srinagar, Kashmir,
India.

Received 21 July 2020; Accepted (in revised version) 6 August 2020

Abstract. Let R be a commutative ring with identity and n be a natural number. The
generalized Cayley graph of R, denoted by Γn

R, is the graph whose vertex set is Rn\{0}
and two distinct vertices X and Y are adjacent if and only if there exists an n×n lower
triangular matrix A over R whose entries on the main diagonal are non-zero such that
AXT = YT or AYT = XT , where for a matrix B, BT is the matrix transpose of B. In
this paper, we give some basic properties of Γn

R and we determine the domination
parameters of Γn

R.
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1 Introduction

The theory of Cayley graphs has grown into a substantial branch of algebraic graph the-
ory in the last few decades. The concept of Cayley graph was introduced by Aurther
Cayley in 1878 to explain the abstract groups which are described by a set of generators.
Cayley graphs of groups have been extensively studied and some interesting results have
been obtained (see [3]). Also, the Cayley graphs of semi groups have been considered by
some authors (see [5, 8–14, 16]).

Let R be a commutative ring with identity. Sharma and Bhatwadekar [18] defined
the comaximal graph on R, denoted by Γ(R), with all elements of R being the vertices of
Γ(R), where two distinct vertices a and b are adjacent if and only if aR+bR=R. In [15,19],
the authors considered a subgraph Γ2(R) of Γ(R) consisting of non unit elements of R,
and investigated several properties of the comaximal graph. Also the comaximal graph
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of a non-commutative ring was defined and investigated in [20]. Note that the subgraph
of the undirected Cayley graph Cay(R∗,R∗) consisting of non-unit vertices is a subgraph
of the complement of the comaximal graph Γ2(R). Moreover, the two subgraphs of the
undirected Cayley graph Cay(R∗,R∗) and the comaximal graph Γ(R) consisting of unit
elements of R are isomorphic. In view of this, Khashyarmanesh et al. [1] introduced and
characterized the rings in terms of the genus and crosscap numbers of the generalized
Cayley graph Γn

R of a commutative ring R. For a natural number n and a commutative
ring R with identity element, we associate a simple graph, denoted by Γn

R, with Rn\{0} as
the vertex set and two distinct vertices X and Y are adjacent if and only if there exists an
n×n lower triangular matrix A over R whose entries on the main diagonal are non-zero
such that AXT =YT or AYT =XT, where for a matrix B, BT is the matrix transpose of B.
In case n=1, the resulting graph is the undirected graph Cay(R∗,R∗). They determined
the clique number of the graph which is always greater than or equal to |U(R)||R|n−1,
where U(R) is the set of all units in R. In this paper, we obtain the domination number
of generalized Cayley graph associated with rings.

Let G be a graph with vertex set V. A subset D of V is called a dominating set of G if
every vertex in V\D is adjacent to at least one vertex in D. The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set of G. A subset D of V
is called total dominating set of G if every vertex in V is adjacent to at least one vertex in
D. The total domination number of G, denoted by γc(G), is the minimum cardinality of a
total dominating set of G. A dominating set D is called a connected dominating set if the
induced subgraph 〈D〉 is connected. The connected domination number γc(G) of a graph
G equals the minimum cardinality of a connected dominating set in G. A dominating set
D is called an independent dominating set of G if no two vertices of D are adjacent in
G. The minimum cardinality of an independent dominating set of G is the independent
domination number γi(G). For basic definitions on graphs, we refer to [4, 6, 17].

A ring (R,m) is called local if it has a unique maximal ideal m. We note that J(R) is
the Jacobson radical of R and Reg(R) is the set of regular elements of R. For any set X,
let X∗ denote the non-zero elements of X. We denote the ring of integers modulo n by
Zn, the field with q elements by Fq. For basic definitions on rings, one may refer [2, 7].
Throughout this paper, we assume that R is a commutative ring with identity and n>1.

The following results are useful in the subsequent sections.

Lemma 1.1 ([1]). Let X=(x1,x2,··· ,xn)∈Rn\{0} be a vertex whose first component is a unit
and Y=(y1,y2,··· ,yn)∈Rn\{0} be a vertex whose first component is non-zero. Then X and Y
are adjacent in Γn

R. Further, the induced subgraph of all vertices whose first components are units
is a complete graph.

Theorem 1.1 ([1]). If R is an integral domain, then Γn
R is disconnected. Moreover, Γn

R has n
components and every component is a refinement of a star. Hence, if R is a field, then Γn

R has n
complete components.
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2 Domination number of Γn
R

We determine the domination number of Γn
R. For each i with 1≤i≤n, we use the notation

Ci to denote the set of all vertices whose first non-zero elements are in the ith place, Ei is a
vertex whose ith element is 1 and the other elements are zero and

V(Γn
R)=

n⋃
i=1

Ci.

Theorem 2.1. If R is a field, then Γn
R is perfect. For i, (1≤ i≤n),

deg(X)= |R∗||R|n−i−1

for all X∈Ci.

Proof. By Theorem 1.1, Γn
R has n complete components, each of its components is in-

duced by Ci for 1≤ i≤n and so the clique number and chromatic number of any induced
subgraph of Γn

R are equal and hence Γn
R is perfect. Note that |Ci|= |R∗||R|n−i for every

i=1,2,··· ,n. Hence, for any X∈Ci, deg(X)= |Ci|−1.

Theorem 2.2. Let (R,m) be a local ring and m 6={0} is a principal ideal. Then γ(Γn
R)=1.

Proof. Since R is local, so ann(x)=m for some x∈m and x 6=0. As m is principal, therefore
m = 〈a〉 for some a∈m∗. Consider a vertex X = (x1,x2,··· ,xn)∈V(Γn

R) such that x1 = a
and x2 is an unit in R. Let Y=(y1,y2,··· ,yn) be any vertex of Γn

R and X 6=Y. We have the
following cases to consider.

Case 1. If y1∈U(R), then consider an n×n lower triangular matrix A=[aij] over R whose
entries satisfy the following properties a11 = x1y−1

1 , aii = 1 for i> 1, ai1 = y−1
1 (xi−yi) for

i>1, aij =0 for i 6= j and j>1. Therefore,

AYT =


x1y−1

1 0 0 ··· 0
y−1

1 (x2−y2) 1 0 ··· 0
y−1

1 (x3−y3) 0 1 ··· 0
...

...
...

...
y−1

1 (xn−yn) 0 0 ··· 1

×


y1
y2
y3
...

yn

=


x1
x2
x3
...

xn

=XT.

Hence X and Y are adjacent in Γn
R.

Case 2(a). Suppose y1∈m∗ and y2 6=0. Since m∗=〈a〉, so y1=ra for some r∈R∗. Consider an
n×n lower triangular matrix A=[aij] over R with entries on the main-diagonal to be non-
zero and the entries satisfies the following properties a11 = r, aii =1 for i>2, a22 = x−1

2 y2,
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ai2= x−1
2 (−xi+yi) for i>2, aij =0 for i 6= j and j 6=2. Therefore,

AXT =


r 0 0 ··· 0
0 x−1

2 y2 0 ··· 0
0 x−1

2 (−x3+y3) 1 ··· 0
...

...
...

...
0 x−1

2 (−xn+yn) 0 ··· 1

×


x1
x2
x3
...

xn

=


y1
y2
y3
...

yn

=YT.

Hence X and Y are adjacent in Γn
R.

Case 2(b). Suppose y2=0. Then we construct an n×n lower triangular matrix A=[aij] over
R with non-zero diagonal entries such that the entries satisfy the following properties
a11=r, aii=1 for i>2, a21=1, a22=−x−1

2 x1, ai2=x−1
2 (−xi+yi) for i>2, aij=0 for i 6= j and

j 6=2. Thus,

AXT =


r 0 0 ··· 0
1 −x−1

2 x1 0 ··· 0
0 x−1

2 (−x3+y3) 1 ··· 0
...

...
...

...
0 x−1

2 (−xn+yn) 0 ··· 1

×


x1
x2
x3
...

xn

=


y1
y2
y3
...

yn

=YT.

Hence X and Y are adjacent in Γn
R.

Case 3(a). If y1 = 0 and y2 6= 0, then consider an n×n lower triangular matrix A = [aij]

over R whose entries satisfy the following properties a11 = x, aii =1 for i>2, a22 = x−1
2 y2,

ai2= x−1
2 (−xi+yi) for i>2, aij =0 for i 6= j and j 6=2. Therefore,

AXT =


x 0 0 ··· 0
0 x−1

2 y2 0 ··· 0
0 x−1

2 (−x3+y3) 1 ··· 0
...

...
...

...
0 x−1

2 (−xn+yn) 0 ··· 1

×


x1
x2
x3
...

xn

=


y1
y2
y3
...

yn

=YT.

Hence X and Y are adjacent in Γn
R.

Case 3(b). Suppose y1=0 and y2=0. Then we construct an n×n lower triangular matrix
A = [aij] over R whose entries satisfy the following properties a11 = x, aii = 1, for i > 2,
a21=1, a22=−x−1

2 x1, ai2= x−1
2 (−xi+yi) for i>2, aij =0 for i 6= j and j 6=2. Thus,

AXT =


x 0 0 ··· 0
1 −x−1

2 x1 0 ··· 0
0 x−1

2 (−x3+y3) 1 ··· 0
...

...
...

...
0 x−1

2 (−xn+yn) 0 ··· 1

×


x1
x2
x3
...

xn

=


y1
y2
y3
...

yn

=YT.
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Hence X and Y are adjacent in Γn
R. From the above three cases, it follows that X is adjacent

to all other vertices of Γn
R and so γ(Γn

R)=1.

Theorem 2.3. Let R be a ring which is not an integral domain and is other than the local ring
whose maximal ideal is principal. Then

γ(Γn
R)=2=γc(Γn

R).

Proof. Since R is not an integral domain, there exist non-zero elements a and b in R such
that ab=0. Let

D={X=(x1,x2,··· ,xn), Y=(y1,y2,··· ,yn)},

where x1,y2∈U(R),y1=a∈Z∗(R). Let Z=(z1,z2,··· ,zn) be any vertex in Γn
R. We consider

the following cases.

Case 1. Suppose that z1 6= 0. Then we construct a n×n lower triangular matrix A= [aij]

over R whose entries satisfy the following properties a11 = x−1
1 z1, aii = 1 for i > 1, ai1 =

x−1
1 (zi−xi) for i>1, aij =0 for i 6= j and j>1. Thus, we have

AXT =


x−1

1 z1 0 0 ··· 0
x−1

1 (z2−x2) 1 0 ··· 0
x−1

1 (z3−x3) 0 1 ··· 0
...

...
...

...
x−1

1 (zn−xn) 0 0 ··· 1

×


x1
x2
x3
...

xn

=


z1
z2
z3
...

zn

=ZT.

Hence X is adjacent to all the vertices whose first component is non-zero.

Case 2. Suppose z1 =0 and z2 6=0. We can construct the lower triangular matrix A=[aij]

over R with non-zero diagonal entries as follows ai1 = b for i≥ 1, a22 = y−1
2 z2, aii = 1 for

i>2, ai2=y−1
2 (−yi+zi) for i>2, aij =0, for i 6= j and j>2. Thus,

AYT =


b 0 0 0 ··· 0
b y−1

2 z2 0 0 ··· 0
b y−1

2 (z3−y3) 1 0 ··· 0
...

...
...

...
...

b y−1
2 (zn−yn) 0 0 ··· 1

×


y1
y2
y3
...

yn

=


z1
z2
z3
...

zn

=ZT.

Therefore Y is adjacent to all the vertices whose first non-zero component is in the second
place.

Case 3. Suppose z1 = z2 =0. Now, we consider the lower triangular matrix A=[aij] over
R with non-zero diagonal entries, where ai1 = b for i 6=2, a21 =−1, a22 = y1y−1

2 , aii =1 for
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i>2, ai2=y−1
2 (−yi+zi) for i>2, aij =0 for i 6= j and j>2. Thus,

AYT =


b 0 0 0 ··· 0
−1 y1y−1

2 0 0 ··· 0
b y−1

2 (−y3+z3) 1 0 ··· 0
...

...
...

...
...

b y−1
2 (−yn+zn) 0 0 ··· 1

×


y1
y2
y3
...

yn

=


z1
z2
z3
...

zn

=ZT.

Hence Y is adjacent all the vertices whose first component is zero. Hence, from the above
three cases, it follows that D is a dominating set of Γn

R and so γ(Γn
R)≤2.

Now, let γ(Γn
R)=1. Then there exists a vertex X=(x1,x2,··· ,xn)∈Γn

R such that {X} is
a dominating set of Γn

R. Let Y=(y1,y2,··· ,yn) be any vertex in Γn
R. Consider first the case

x1∈U(R). Then consider Y such that y1=0. It can be easily verified that X is not adjacent
to Y in Γn

R, a contradiction.
Suppose x1∈Z(R). Then consider Y such that y1∈Reg(R). If X and Y are adjacent,

then we can find a lower triangular matrix A = [aij] over R whose entries on the main
diagonal are non-zero such that AXT =YT or AYT = XT. If AXT =YT, then a11x1 = y1
which is impossible. If AYT =XT, then a11y1= x1 which is again impossible.

If x1∈Reg(R), then consider Y such that y1∈Z(R). Suppose X and Y are adjacent, we
get a similar contradiction as in the above case. Thus γ(Γn

R)=2.
By Lemma 1.1, X and Y are adjacent in Γn

R and hence γc(Γn
R)=2.

Theorem 2.4. If R is an integral domain, then γ(Γn
R)=n.

Proof. Since R is an integral domain, by Theorem 1.2, Γn
R is disconnected. Also, Γn

R has
n components and every component is a refinement of a star graph with center Ei for
1≤ i≤n. Let D={E1,E2,··· ,En}. Then D is a dominating set and hence γ(Γn

R)=n.

If R∼=Z2, then as in the proof of Theorem 2.1, Γn
R has n complete components induced

by Ci for 1≤ i≤n and |Cn|=1. Hence γt(Γn
R) does not exist.

Theorem 2.5. If R is a commutative ring and R�Z2, then γt(Γn
R)=2 or 2n.

Proof. Case 1. Suppose R is not an integral domain. Then there exist non-zero elements
a and b such that ab = 0. Let D = {X,Z}, where X = (x1,x2,··· ,xn), x1 ∈U(R) and Z =
(z1,z2,··· ,zn), z1 = a, z2 ∈U(R). As in the proof of Theorem 2.3, D is a dominating set.
Since x1∈U(R), by Lemma 1.1, X and Z are adjacent and so γt(Γn

R)=2.
Case 2. Suppose R is an integral domain. Then, by Theorem 1.2, Γn

R is disconnected. Also,
Γn

R has n components Gi for 1≤ i≤n and every component is a refinement of a star graph
with center Ei ∈Gi for 1≤ i≤ n. Let D= {E1,F1,E2,F2,··· ,En,Fn : Fi∈Gi, Fi 6=Ei, 1≤ i≤n}.
Then D is a total dominating set with minimum cardinality and hence γt(Γn

R)=2n.

In the next theorem, we use the notation Xi =(xi1,xi2,··· ,xin) for a vertex in Γn
R.
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Theorem 2.6. If R be a ring, then γi(Γn
R)≤n.

Proof. Let D={X1,X2,··· ,Xn}, where

Xk =(0,0,··· ,0︸ ︷︷ ︸
i=k−1

,xki,xk(i+1),··· ,xkn)∈Ck

for k,i=1,2,··· ,n and the first non-zero component is a unit. Now, we have to prove that
D is dominating set of Γn

R. Let Y be any vertex in Γn
R with Y /∈D. Since

V(Γn
R)=

n⋃
i=1

Ci,

so Y∈Ck for some k. By definition of Ck,

Y=(0,0,··· ,0︸ ︷︷ ︸
i=k−1

,yki,yk(i+1),··· ,ykn)

for i=1,2,··· ,n, is a vertex in Γn
R.

Consider the n×n lower triangular matrix A=[aij] over R whose entries on the main
diagonal are non-zero and satisfies the following conditions, aii =1 for i 6= k, aii = xk

−1
i yki

for i= k, aij = xk
−1
j (yji−xji) for i> k, j= k, aij = 0 for i 6= j, j 6= k. Then AXT

k =YT and so
Xk and Y are adjacent in Γn

R. It is clear that Xi and Xj are not adjacent in Γn
R for any i 6= j.

Since the vertex set of Γn
R is the disjoint union of Ci, therefore γi(Γn

R)≤n.
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