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Abstract. Let R be a commutative ring with identity and #n be a natural number. The
generalized Cayley graph of R, denoted by I'}, is the graph whose vertex set is R"\ {0}
and two distinct vertices X and Y are adjacent if and only if there exists an n x n lower
triangular matrix A over R whose entries on the main diagonal are non-zero such that
AXT=YT or AYT = XT, where for a matrix B, BT is the matrix transpose of B. In
this paper, we give some basic properties of ['; and we determine the domination
parameters of I';.
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1 Introduction

The theory of Cayley graphs has grown into a substantial branch of algebraic graph the-
ory in the last few decades. The concept of Cayley graph was introduced by Aurther
Cayley in 1878 to explain the abstract groups which are described by a set of generators.
Cayley graphs of groups have been extensively studied and some interesting results have
been obtained (see [3]). Also, the Cayley graphs of semi groups have been considered by
some authors (see [5,8-14,16]).

Let R be a commutative ring with identity. Sharma and Bhatwadekar [18] defined
the comaximal graph on R, denoted by I'(R), with all elements of R being the vertices of
I'(R), where two distinct vertices a and b are adjacent if and only if aR+bR=R. In [15,19],
the authors considered a subgraph I';(R) of I'(R) consisting of non unit elements of R,
and investigated several properties of the comaximal graph. Also the comaximal graph
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of a non-commutative ring was defined and investigated in [20]. Note that the subgraph
of the undirected Cayley graph Cay(R*,R*) consisting of non-unit vertices is a subgraph
of the complement of the comaximal graph I'>(R). Moreover, the two subgraphs of the
undirected Cayley graph Cay(R*,R*) and the comaximal graph I'(R) consisting of unit
elements of R are isomorphic. In view of this, Khashyarmanesh et al. [1] introduced and
characterized the rings in terms of the genus and crosscap numbers of the generalized
Cayley graph I'; of a commutative ring R. For a natural number n and a commutative
ring R with identity element, we associate a simple graph, denoted by I'%, with R”\ {0} as
the vertex set and two distinct vertices X and Y are adjacent if and only if there exists an
n xn lower triangular matrix A over R whose entries on the main diagonal are non-zero
such that AXT=YT or AYT = XT, where for a matrix B, BT is the matrix transpose of B.
In case n =1, the resulting graph is the undirected graph Cay(R*,R*). They determined
the clique number of the graph which is always greater than or equal to |U(R)||R|" ",
where U(R) is the set of all units in R. In this paper, we obtain the domination number
of generalized Cayley graph associated with rings.

Let G be a graph with vertex set V. A subset D of V is called a dominating set of G if
every vertex in V'\ D is adjacent to at least one vertex in D. The domination number of G,
denoted by (G), is the minimum cardinality of a dominating set of G. A subset D of V
is called total dominating set of G if every vertex in V' is adjacent to at least one vertex in
D. The total domination number of G, denoted by .(G), is the minimum cardinality of a
total dominating set of G. A dominating set D is called a connected dominating set if the
induced subgraph (D) is connected. The connected domination number 7. (G) of a graph
G equals the minimum cardinality of a connected dominating set in G. A dominating set
D is called an independent dominating set of G if no two vertices of D are adjacent in
G. The minimum cardinality of an independent dominating set of G is the independent
domination number 7;(G). For basic definitions on graphs, we refer to [4,6,17].

A ring (R,m) is called local if it has a unique maximal ideal m. We note that J(R) is
the Jacobson radical of R and Reg(R) is the set of regular elements of R. For any set X,
let X* denote the non-zero elements of X. We denote the ring of integers modulo n by
Z,, the field with q elements by IF,. For basic definitions on rings, one may refer [2,7].
Throughout this paper, we assume that R is a commutative ring with identity and n > 1.

The following results are useful in the subsequent sections.

Lemma 1.1 ([1]). Let X =(x1,x2,---,%,) € R"\{0} be a vertex whose first component is a unit
and Y = (y1,¥2,--- ,yn) € R"\ {0} be a vertex whose first component is non-zero. Then X and Y
are adjacent in I'y. Further, the induced subgraph of all vertices whose first components are units
is a complete graph.

Theorem 1.1 ([1]). If R is an integral domain, then Ty is disconnected. Moreover, I'y has n
components and every component is a refinement of a star. Hence, if R is a field, then I'y has n
complete components.
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2 Domination number of I';

We determine the domination number of I';. For each i with 1 <i<#n, we use the notation
C; to denote the set of all vertices whose first non-zero elements are in the it place, E; is a
vertex whose i" element is 1 and the other elements are zero and

n

vy =Jc.

i=1
Theorem 2.1. If R is a field, then T'%, is perfect. Fori, (1<i<n),
deg(X) = |R*[|R|" " ~1
forall X €C;.

Proof. By Theorem 1.1, I'; has n complete components, each of its components is in-
duced by C; for 1 <i<n and so the clique number and chromatic number of any induced
subgraph of I'% are equal and hence I'} is perfect. Note that |C;| =|R*||R|""" for every
i=1,2,---,n. Hence, for any X €C;, deg(X)=|C;i| —1. d

Theorem 2.2. Let (R,m) be a local ring and m # {0} is a principal ideal. Then y(T)=1.

Proof. Since R is local, so ann(x)=m for some x €m and x #0. As m is principal, therefore
m = (a) for some a € m*. Consider a vertex X = (x1,x,---,x,) € V(I'}) such that x; =a
and x; is an unit in R. Let Y = (y1,y2,---,¥») be any vertex of I'; and X #Y. We have the
following cases to consider.

Case 1. If y; € U(R), then consider an n x nn lower triangular matrix A= [a;;] over R whose
entries satisfy the following properties a11 = x1y; Ugi=1fori>1,aq= vy 1(xi—yi) for
i>1,a;=0 for i #j and j > 1. Therefore,

ayrt 00 0 m\  (n
yil(a—y2) 10 0 v2 X2

AYT= | yi'(xa—ys3) 0 1 0 [x|vs]|=]|x|=xT.
yi ' (xn—=ya) 0 O 1 Yn X

Hence X and Y are adjacent in I'}.

Case 2(a). Suppose y; €m* and y, #0. Since m*=(a), so y;=ra for some r€ R*. Consider an
nxn lower triangular matrix A=[a;;] over R with entries on the main-diagonal to be non-

zero and the entries satisfies the following properties a1 =7, a;;=1for i >2, ap =x, 1y2,
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ap=x5" (—x;+y;) fori>2, a;j=0 for i #j and j # 2. Therefore,

r 0 0 --- 0 X1 yl
0 x5 o 0 0 X2 o
AXT=10

xz—l(_x3_|_y3> 1 --- 0 X X3 = y3 :YT.

Yn

—_
= ...
=

0 xz_l(—xn—i-yn) 0
Hence X and Y are adjacent in I'}.

Case 2(b). Suppose y>=0. Then we construct an n x n lower triangular matrix A=|a;;] over
R with non-zero diagonal entries such that the entries satisfy the following properties
ap=r,a;=1fori>2,a,1=1, ap= —xz’lxl, ap :xz’l(—xﬁ—yi) fori>2,a;;=0fori#jand
j#2. Thus,

r 0 0

o

e xl yl
1 —x,1xp 0 -~ 0 X2 Y2
AxT—=10 x;l(—x3+y3) 1 0 x| =y |=YT.
0 x, ' (=xp+yn) O 1 Xn Yn

Hence X and Y are adjacent in I'}.

Case 3(a). If y1 =0 and y» #0, then consider an n xn lower triangular matrix A = [a;;]
over R whose entries satisfy the following properties a11 =x, a;; =1 for i >2, ap =x; 1]/2,
ap :xgl(—xi—i—yi) fori>2,a;;=0 for i#j and j#2. Therefore,

x 0 0 - 0 X1 2

0 xz_lyz 0 - 0 X2 Y2
AXT=|0 x'(=xstys) 1 =+ 0 |x|x|=|ys|=Y".

0 x ' (=xntyu) O - 1 ¥/ \Yn

Hence X and Y are adjacent in I'}.

Case 3(b). Suppose y; =0 and y, =0. Then we construct an n x n lower triangular matrix
A= [ai]'] over R whose entries satisfy the following properties a1; = x, a;; =1, for i > 2,
ay =1, ayp= —x;lxl, ap :xz’l(—xi—{—yl-) fori>2,a;;=0fori#jand j#2. Thus,

X 0 0 0 X1 Y1
1 —x, 11 0 -~ 0 X2 V2
AXT=10 1

x5 (—x3+y3) 0 [x|x|=|vs|=v"

0 x '(—=xp+y,) 0 -+ 1 Xn Yn



K. Selvakumar et. al. / J. Math. Study, 54 (2021), pp. 1-8 5

Hence X and Y are adjacent in I';. From the above three cases, it follows that X is adjacent
to all other vertices of I'} and so y(I'%) =1. O

Theorem 2.3. Let R be a ring which is not an integral domain and is other than the local ring
whose maximal ideal is principal. Then

YR =2=17e(T).

Proof. Since R is not an integral domain, there exist non-zero elements a and b in R such
that ab=0. Let

D= {X: (x11x21' ot Ixﬂ)l Y= (]/1;]/2/' e /yn)}/
where x1,y, €U(R),y1=a€Z*(R). Let Z=(z1,2,--,2zx) be any vertex in I';. We consider
the following cases.

Case 1. Suppose that z; #0. Then we construct a n x n lower triangular matrix A = [a;;]
over R whose entries satisfy the following properties a1; = x; Y21, a5 =1fori>1, a5 =
xfl(zi—xi) fori>1,a;;=0 fori#jand j>1. Thus, we have

x1_121 00 0 X1 21
xNza—x) 1.0 - 0 X z

AXT=| x; zs—x3) 0 1 0 [x]|x|=|z]|=2".
xl’l(zn—xn) 00 1 Xn Zn

Hence X is adjacent to all the vertices whose first component is non-zero.

Case 2. Suppose z; =0 and z; # 0. We can construct the lower triangular matrix A = [a;;]

over R with non-zero diagonal entries as follows a;; =b for i > 1, ax =y, L2, a;;=1 for
i>2,ap :yz’l (=yi+z) fori>2,a;;=0, fori#jand j>2. Thus,

b 0 00 - 0 i 71

b y;'zz 00 0 Y2 )
AYT=|b vyl (zs—y3) 1 0 0 [x|w|=|2z|=2"

b y;l(zn—yn) 00 -~ 1 Yn Zn

Therefore Y is adjacent to all the vertices whose first non-zero component is in the second
place.

Case 3. Suppose z; =z =0. Now, we consider the lower triangular matrix A = [a;;] over
R with non-zero diagonal entries, where a;; =b for i #2, a1 = —1, ax =1y, 1 ai=1 for
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i>2,ap :yz_l (_yi+zi) fori>?2, IZZ']':O for 175] andj>2. Thus,

b 0 00 0 " )

-1 ylygl 00 0 ]/2 Z
AYT=| by (—ys+z3) 1 0 Ofx|ys|=|2]|=2"

boy; (~yntza) 0 0O 1 Yn Zn

Hence Y is adjacent all the vertices whose first component is zero. Hence, from the above
three cases, it follows that D is a dominating set of I'} and so y(I'}) <2.

Now;, let y(I'}) =1. Then there exists a vertex X = (x1,x2,---,x,) € T’} such that {X} is
a dominating set of I'}. Let Y = (y1,y2,--,y») be any vertex in I'},. Consider first the case
x1 €U(R). Then consider Y such that y; =0. It can be easily verified that X is not adjacent
to Y in I'}, a contradiction.

Suppose x1 € Z(R). Then consider Y such that y; € Reg(R). If X and Y are adjacent,
then we can find a lower triangular matrix A = [a;] over R whose entries on the main
diagonal are non-zero such that AXT =YT or AYT =XT. If AXT =Y7, then a;1x; =1
which is impossible. If AYT = X7, then a;1y1 = x; which is again impossible.

If x1 € Reg(R), then consider Y such that y; € Z(R). Suppose X and Y are adjacent, we
get a similar contradiction as in the above case. Thus (I'}) =2.

By Lemma 1.1, X and Y are adjacent in I'} and hence 7.(T'}) =2. O

Theorem 2.4. If R is an integral domain, then y(I'}) =n.

Proof. Since R is an integral domain, by Theorem 1.2, I'; is disconnected. Also, I'; has
n components and every component is a refinement of a star graph with center E; for
1<i<n.Let D={Ej,Ey,---,E,;}. Then D is a dominating set and hence y(T'};) =n. O

If R=Z,, then as in the proof of Theorem 2.1, I'; has n complete components induced
by C; for 1 <i<mnand |C,|=1. Hence 7;(T'};) does not exist.

Theorem 2.5. If R is a commutative ring and R%ZZ,, then ¢(I'}) =2 or 2n.

Proof. Case 1. Suppose R is not an integral domain. Then there exist non-zero elements
a and b such that ab=0. Let D ={X,Z}, where X = (x1,x2,---,x,), x1 € U(R) and Z =
(z1,22,°++,2Zn), z1 =4, zp € U(R). As in the proof of Theorem 2.3, D is a dominating set.
Since x; € U(R), by Lemma 1.1, X and Z are adjacent and so ;(IT'%) =2.

Case 2. Suppose R is an integral domain. Then, by Theorem 1.2, I'; is disconnected. Also,
I'z has n components G; for 1 <i<n and every component is a refinement of a star graph
with center E; € G; for 1 <i<n. Let D={Ey,F,Ey,F,--- ,E;,F.: FF€G;, Fi#E;, 1<i<n}.
Then D is a total dominating set with minimum cardinality and hence ;(T'%)=2n. O

In the next theorem, we use the notation X; = (x;1,Xjy,--+,X;, ) for a vertex in I'}.
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Theorem 2.6. If R be a ring, then ;(T}) <n.
Proof. Let D={X1,Xa,---,Xn}, where

Xk = (010/' o /9/xkilxk(i+l)/' o /xkn) € Ck
i=k—1

for k,i=1,2,---,n and the first non-zero component is a unit. Now, we have to prove that
D is dominating set of I';. Let Y be any vertex in I'; with Y'¢ D. Since

n

V(IR =U¢,

i=1

so Y € Ci for some k. By definition of Cy,

Y= (0,0, 0, Yiis (i 1) Vi)
i=k—1

fori=1,2,---,n,is a vertex in I';.

Consider the n x n lower triangular matrix A = [a;;] over R whose entries on the main
diagonal are non-zero and satisfies the following conditions, a;; =1 for i #k, a;; = xki_lyk ;
for i=k, a; :xkj’l(yjl.—sz.) fori>k, j=k, a;j=0fori#j, j#k Then AX[ =YT and so
Xk and Y are adjacent in I';. It is clear that X; and X; are not adjacent in T'; for any i # j.
Since the vertex set of I'} is the disjoint union of C;, therefore ;(T';) <n. O
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