
Numer. Math. Theor. Meth. Appl. Published online 9 October 2020

doi: 10.4208/nmtma.OA-2020-0062

Quasi-Monte Carlo Sampling for Solving Partial

Differential Equations by Deep Neural Networks

Jingrun Chen1, Rui Du1,∗, Panchi Li2 and Liyao Lyu3

1 School of Mathematical Sciences and Mathematical Center for

Interdisciplinary Research, Soochow University, Suzhou 215006, China
2 School of Mathematical Sciences, Soochow University, Suzhou 215006, China
3 School of Mathematical Sciences and CW Chu College, Soochow University,

Suzhou 215006, China

Received 14 April 2020; Accepted (in revised version) 7 September 2020

Abstract. Solving partial differential equations in high dimensions by deep neural

networks has brought significant attentions in recent years. In many scenarios, the
loss function is defined as an integral over a high-dimensional domain. Monte-Carlo

method, together with a deep neural network, is used to overcome the curse of
dimensionality, while classical methods fail. Often, a neural network outperforms

classical numerical methods in terms of both accuracy and efficiency. In this pa-

per, we propose to use quasi-Monte Carlo sampling, instead of Monte-Carlo method
to approximate the loss function. To demonstrate the idea, we conduct numerical

experiments in the framework of deep Ritz method. For the same accuracy require-

ment, it is observed that quasi-Monte Carlo sampling reduces the size of training
data set by more than two orders of magnitude compared to that of Monte-Carlo

method. Under some assumptions, we can prove that quasi-Monte Carlo sampling

together with the deep neural network generates a convergent series with rate pro-
portional to the approximation accuracy of quasi-Monte Carlo method for numerical

integration. Numerically the fitted convergence rate is a bit smaller, but the pro-
posed approach always outperforms Monte Carlo method.

AMS subject classifications: 11K50, 35J20, 65N99

Key words: Quasi-Monte Carlo sampling, deep Ritz method, loss function, convergence analy-

sis.

1. Introduction

Deep neural networks (DNNs) have had great success in text classification, com-

puter vision, natural language processing and other data-driven applications [13, 16,

∗Corresponding author. Email addresses: jingrunchen@suda.edu.cn (J. Chen), durui@suda.edu.cn

(R. Du), LiPanchi1994@163.com (P. Li), lylv@stu.suda.edu.cn (L. Lyu)

http://www.global-sci.org/nmtma 1 c©2020 Global-Science Press

2 J. Chen et al.

21, 30, 35]. Recently, DNNs have been applied to the field of numerical analysis and

scientific computing, with the emphasis on solving high-dimensional partial differential

equations (PDEs) [11,12,17,32], which are widely used in physics and finance. Notable

examples include Schrödinger equation in the quantum many-body problem [15, 18],

Hamilton-Jacobi-Bellman equation in stochastic optimal control [10,17], and nonlinear

Black-Scholes equation for pricing financial derivatives [1,7].

Classical numerical methods, such as finite difference method [23] and finite ele-

ment method [3], share the similarity that the approximation stencil has compact sup-

port, resulting in the sparsity of stiffness matrix (or Hessian in the nonlinear case).

Advantages of these methods are obvious for low dimensional PDEs (the dimension

K ≤ 3). However, the number of unknowns grows exponentially as K increases

and classical methods run into the curse of dimensionality. In another line, spectral

method [31] uses basis functions without compact support and thus sacrifices the spar-

sity, but often has the exponential accuracy. However, the number of modes used in the

spectral method also grows exponentially as K increases. Sparse grid method [5,8,14]

mitigates the aforementioned situation to some extent (K ≤ 9 typically). Therefore,

high-dimensional PDEs are far out of the capability of classical methods.

The popularity of DNNs in scientific computing results from its ability to approxi-

mate a high-dimensional function without the curse of dimensionality. To illustrate

this, we focus on methods in which the loss function is defined as an integral over

a bounded domain in high dimensions; see the deep Ritz method [11] and the deep

Galerkin method [32] for examples. The success of DNNs relies on composition of

functions without compact support and sampling strategy for approximating the high-

dimensional integral. It is known that the choice of approximate functions in DNNs is

of particular importance. For example, in the current work, the approximate function

in one block of DNN consists of two linear transformations, two nonlinear activation

functions, and one shortcut connection. Besides, since the network architecture is

chosen a priori, the number of parameters can be independent of K or only grows

linearly as K increases. On the other hand, only a fixed number of samples (or at most

linear growth) is used to approximate the high-dimensional integral. Altogether, DNNs

can overcome the curse of dimensionality when solving high-dimensional PDEs. In [2],

the above step of numerical quadrature is viewed as approximating the expected risk

by its empirical risk using Monte Carlo (MC) method. Consequently, the full gradient

of the loss function is approximated by a finite number of samples and the stochastic

gradient descent (SGD) method is used to find the optimal set of parameters in the

network. It is shown that such a procedure converges under some assumptions.

From the perspective of numerical analysis, using N i.i.d. random points, MC me-

thod approximates an integral with O(N− 1

2) error [24]. It is also known that using

N carefully chosen (deterministic) points, quasi-Monte Carlo (QMC) method approxi-

mates an integral with O((logN)K

N−1) error and the logarithmic factor can be removed un-

der some assumptions [9,27,28,34]. Therefore, it is natural to replace MC method by

QMC method in the community of machine learning. One example is the usage of QMC

method in variational inference and QMC method has been proved to perform better

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 3

than MC method [4]. Another example is the usage of QMC sampling in the stage of

data generation for training DNNs; see an application in organic semiconductors [25].

In this work, we consider another application of QMC method, i.e., approximation of

the high-dimensional integral when solving PDEs by DNNs.

In order to demonstrate the advantages of QMC method, we take deep Ritz method

[11] as an example. Results obtained here shall be applicable to other methods, like

deep Galerkin method [32], where a high-dimensional integral is defined as the loss

function. Briefly speaking, deep Ritz method solves a variational problem for a high-

dimensional PDE using a deep neural network with residual connection. Data are

drawn randomly over the high-dimensional domain to train the parameters of the neu-

ral network. All numerical observations in the current work are based on deep Ritz

method. In deep Galerkin method, the loss function contains not only the volume inte-

gral over the high-dimensional domain but also penalty terms for boundary conditions

and initial conditions. We also demonstrate the advantage of QMC method in deep Ritz

method when the penalty term is present. Theoretically, under certain assumptions, we

prove a convergence result of the SGD method with respect to both the iteration num-

ber and the size of training data set.

The paper is organized as follows. We first introduce deep Ritz method for PDEs

and QMC method in Section 2. Numerical results of QMC sampling and MC sampling

are shown in Section 3 with convergence analysis given in Section 4. Conclusions are

drawn in Section 5.

2. Quasi-Monte Carlo sampling for deep Ritz method

For completeness, we first introduce deep Ritz method. The basic idea is to solve

a variational problem associated to a PDE using DNNs. The training data points are

chosen randomly over the given domain using MC method. SGD method is then used

to find an optimal solution. In the current work, QMC method is employed to replace

MC method and the other components are remained almost the same. For consistency,

we use superscripts for indices of sampling points and subscripts for coordinates of

a vector throughout the paper.

2.1. Loss function

We take the variational problem associated to the Poisson equation [22] as an ex-

ample

min
u∈H

I[u], (2.1)

where the loss function (objective function) I[u] reads as

I[u] =

∫

Ω

(

1

2
|∇u(x)|2 − f(x)u(x)

)

dx, (2.2)

4 J. Chen et al.

and the set of trial functions H is of infinite dimension. Here f is a given function,

representing the external force to the system and Ω is a bounded domain in R
K .

When the solution of a PDE is approximated by a neural network u(x) ≈ ûθ(x),
i.e., H is restricted to a highly nonlinear manifold, our goal is to find the optimal set of

parameters in the neural network, denoted by θ, such that

I(θ) =

∫

Ω

(

1

2
|∇xûθ(x)|2 − f(x)ûθ(x)

)

dx (2.3)

is minimized. Numerically, a quadrature scheme is needed and the above objective

function is approximated by

I(θ) ≈ 1

N

N
∑

i=1

(

1

2

∣

∣∇xûθ(x
i)
∣

∣

2 − f(xi)ûθ(x
i)

)

(2.4)

with N sampling points {xi}Ni=1 which will be specified in Section 2.3.

2.2. Trial function and network architecture

The neural network we use here is stacked by several blocks with each containing

two linear transformations, two activation functions and one shortcut connection. The

i-th block can be formulated as

t = fi(s) = σ
(

θi,2 · σ(θi,1 · s+ bi,1) + bi,2
)

+ s. (2.5)

Here s ∈ Rm is the input with the dimension m, t ∈ Rm is the output, weights θi,1, θi,2 ∈
Rm×m, bi,1, bi,2 ∈ Rm and σ is the activation function. Fig. 1 demonstrates one block of

the network.

To balance simplicity and accuracy, we use the following swish function

σ(x) =
x

1 + exp(−x)
(2.6)

as the activation function [29], which is different from the one used in [11].

The last term on the right-hand side of (2.5) is called the shortcut connection or

residual connection. Benefits of using it are [19]:

1) It can automatically solve the notorious problem of vanishing/exploding gradient.

2) Without adding any parameters or computational complexity, the shortcut connec-

tion performing as an identity mapping can resolve the degradation issue. That

is, with the network depth increasing, accuracy gets saturated and then degrades

rapidly.

With these components, the fully connected n-layer network can be expressed as

fθ′(x) = fn ◦ fn−1 ◦ · · · ◦ f1(x), (2.7)

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 5

Figure 1: One block of the network. Typically a deep neural network contains a sequence of blocks, each
of which consists of two fully-connected layers and one shortcut connection.

where θ′ denotes the set of parameters in the network. Since the input x in the first

block is in R
K , not in R

m, we need to apply a linear transformation on x before putting

it into the network structure. Having fθ′(x), we obtain ûθ(x) by

ûθ(x) = a · fθ′(x) + b, (2.8)

where θ = {θ′, a, b}. Note that the parameters a and b in (2.8) also need to be trained.

To make (2.1)-(2.2) have a unique solution, a boundary condition has to be im-

posed. Consider the inhomogeneous Dirichlet boundary condition for example

u(x) = g(x), x ∈ ∂Ω. (2.9)

One way to implement it is to select trial functions that satisfy the boundary condition

and thus have to be problem-dependent. To avoid this, we build trial functions of the

form

ûθ(x) = A(x) ·
(

a · fθ′(x) + b
)

+B(x), x ∈ Ω, (2.10)

where by choice A(x) = 0 and B(x) = g(x) when x ∈ ∂Ω. Therefore, ûθ(x) satisfies

the boundary condition automatically. For Neumann boundary condition, however, we

have to add a penalty term into the loss function; see (3.7) in Section 3.2 for example.

2.3. Sampling strategies

The loss function is defined over a high-dimensional domain, thus only a fixed size

of points (mini-batch {xi}Ni=1) is allowed to approximate the integral. Due to the curse

6 J. Chen et al.

of dimensionality, standard quadrature rules may run into the risk that the integrand

is minimized on fixed points but the functional itself is far away from being minimized

[11]. Therefore, points are chosen randomly and the approximation accuracy is of

O(N− 1

2) [24]. For stochastic problems, from the perspective of sampling strategies, it

is well known that QMC method performs much better with the same size of sampling

points [6,9,27]. We briefly review both methods here.

Consider Ω = [0, 1]K (K ≫ 1) for convenience and let u be an integrable function

in Ω

I(u) =

∫

Ω
u(x)dx < ∞, (2.11)

which is approximated by N points of the form

QN (u) =
1

N

N
∑

i=1

u(xi). (2.12)

Let PN = {xi}Ni=1 ⊂ Ω be the prescribed sampling points. In MC method, these

points are chosen randomly and independently from the uniform distribution in Ω.

There exists a probabilistic error (root mean square error) estimate for MC method

√

E

[

|I(u)−QN (u)|2
]

=
σ(u)√
N

,

where σ2(u) is the variance of u of the form

σ2(u) = I
(

u2
)

−
(

I(u)
)2
.

It is easy to check that MC method is unbiased, i.e., E[QN (u)] = I(u). The variance

of MC method is

Var
(

QN (u)
)

= E

[

|I(u)−QN (u)|2
]

=
1

N(N − 1)

N
∑

i=1

(

u(xi)−QN (u)
)2

=
1

N(N − 1)

(

N
∑

i=1

u2(xi)−N [QN (u)]2

)

.

In QMC method, however, sampling points are chosen in a deterministic way to

approximate the integral with the best approximation accuracy; see for example [9,27,

28, 34]. The deterministic feature of QMC method leads to a guaranteed error bound

and faster convergence rate for smooth integral functions. More explicitly, an upper

bound of the deterministic error, known as Koksma-Hlawka error bound [27], is

|QN (u)− I(u)| ≤ D(PN)V (u). (2.13)

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 7

Here the variation V (u) is defined as

V (u) =

K
∑

k=1

∑

1≤i1<···<ik≤K

V
(k)
V it (u; i1, . . . , ik),

where V
(k)
V it (u; i1, . . . , ik) is the variation in the sense of Vitali applied to the restriction

of u to the space of dimension k{(u1, . . . , uK) ∈ Ω : uj = 1 for j 6= i1, . . . , ik}. Precisely,

let ∆(u, J) be the alternative sum of u values at the edges of sub-interval J when PN

is a partition of Ω = [0, 1]K , we give the definition of the variation in the sense of Vitali

as

VVit
(u) = sup

PN

∑

J∈PN

|∆(u, J)| .

D(PN) is defined to measure the discrepancy of the set PN as

D(PN) = sup
x∈[0,1]K

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1B(x
n)−

K
∏

i=1

xi

∣

∣

∣

∣

∣

,

where x = (x1, . . . , xK). Note that the error bound in (2.13) is controlled by this

discrepancy and lim
N→+∞

D(PN) = 0 if and only if the sequence PN is equi-distributed. A

sequence PN is said to be a low-discrepancy sequence if D(PN) = O((lnN)K

N
), which is

the best-known result for infinite sequences. Therefore, QMC method converges much

faster than MC method. Practically, the commonly used Sobol sequence is one of the

low-discrepancy sequences [33,34].

2.4. Stochastic gradient descent method

In deep Ritz method, we use the SGD method to find the optimal set of parameters.

The SGD method finds the optimal solution in an iterative way with the i-th iteration

of the form

θi+1 = θi + αig(θi, ξi), (2.14)

where αi is the stepsize and g(θi, ξi) is a stochastic vector defined as

g(θi, ξi) =
1

N

N
∑

k=1

∇I
(

θi, ξ
k
i

)

. (2.15)

At the i-th iteration, ξi is a random variable when interpreting the spatial variable

x in the loss function (2.2) or (2.3) as an expectation, ξki is the k-th realization of ξi
generated by a sampling strategy such as QMC or MC method, ∇I(θi, ξ

k
i) represents the

gradient of the loss function evaluated at θi and ξki . Practically, we use ADAM [20] to

accelerate the training process for both MC and QMC methods. It is worth to mention

that without taking the derivative with respect to θ, (2.15) is equivalent to (2.4) by

interpreting the high-dimensional integral (2.2) or (2.3) as an expectation of a random

variable ξ, which is in an infinite-dimensional space and ξki s are the finite dimensional

realizations.

8 J. Chen et al.

3. Numerical results

Now we are ready to apply QMC sampling strategy to train the network structure

of deep Ritz method in Section 2. For Dirichlet problems and some special Neumann

problems, we do not need penalty terms on the boundary. However, for general Neu-

mann problems, a penalty term must be added to the loss function and thus we have

to approximate this term by sampling on the boundary. No matter in which case, nu-

merically QMC method always performs better than MC method. We use the relative

L2 error for quantitative comparison in all examples

error =

(
∫

Ω

(

ûθ(x)− u(x)
)2
)

1

2

dx

(
∫

Ω
u(x)2dx

)−
1

2

. (3.1)

3.1. A linear Dirichlet boundary condition problem

Consider the Poisson equation























−△u = π2
K
∑

k=1

cos(πxk), x ∈ Ω,

u(x) =
K
∑

k=1

cos(πxk), x ∈ ∂Ω.

(3.2)

over Ω = [−1, 1]K .

The exact solution is u(x) =
∑K

k=1 cos(πxk). We construct the network in the form

of






































ûθ(x) = A(x) · fθ(x) +B(x), x ∈ Ω,

A(x) = exp

(

K
∏

k=1

(

x2k − 1
)

)

− 1, x ∈ Ω,

B(x) = exp

(

K
∏

k=1

(

x2k − 1
)

)

K
∑

k=1

cos(πxk), x ∈ Ω.

(3.3)

It is easy to verify that A(x) = 0, B(x) =
∑K

k=1 cos(πxk) on the boundary, satisfying the

structure defined in (2.10). Fig. 2 plots exact and trained solutions to (3.2) in 2D and

qualitative agreement is observed.

Detailed setup of the neural network used for Dirichlet problem in different dimen-

sions is recorded in Table 1.

Relative L2 errors in different dimensions and the corresponding convergence rates

with respect to the mini-batch size are shown in Tables 2 and 3, respectively. Since

there are some oscillations as the iteration increases, each point here represents the

error averaged over 50 iterations. The total number of iterations is set to be 10000. It

is reasonable to find that QMC method performs better than MC method as shown in

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 9

Table 1: Detailed setup of the neural network used for Dirichlet problem in different dimensions, where m

denotes the number of nodes contained in each layer.

Dimension Blocks Num m Parameters

2 3 8 465

4 4 16 2274

8 4 20 3561

16 4 48 19681

Table 2: Relative L
2 errors in different dimensions with different mini-batch sizes for Dirichlet problem and

the convergence order is recorded with respect to 1

N
.

Dimension Mini-batch size
QMC MC

error(×10−2) order error(×10−2) order

2D

500 1.7141 4.2706

1000 1.1420 0.59 3.4157 0.32

2000 0.7702 0.59 2.6225 0.38

4000 0.6401 0.27 2.2505 0.22

4D

500 1.8735 3.5183

1000 1.4468 0.37 3.0786 0.19

2000 1.0557 0.45 2.6561 0.21

4000 0.8076 0.39 2.0410 0.38

8D

500 2.0737 2.4514

1000 1.5714 0.40 2.2083 0.15

2000 1.1607 0.43 2.0297 0.12

10000 0.8139 0.22 1.1551 0.35

16D

2000 0.8613 2.0754

5000 0.6863 0.25 1.3506 0.47

10000 0.5361 0.36 1.1383 0.25

20000 0.4623 0.21 1.2298 0.11

Table 3: Fitted convergence rates of the relative L
2 error with respect to the mini-batch size in different

dimensions (recorded in terms of 1

N
) for Dirichlet problem.

Dimension QMC MC

2D 0.48 0.32

4D 0.41 0.26

8D 0.31 0.26

16D 0.28 0.24

10 J. Chen et al.

a) Exact solution b) Trained solution

Figure 2: Exact and trained solutions to problem (3.2) in 2D. The exact solution u(x) =
∑

2

k=1
cos(πxk)

and the approximate solution is trained with 5000 points (Sobol sequence) used at each iteration.

a) 500 b) 1000

c) 2000 d) 4000

Figure 3: Detained training processes of QMC and MC methods with different mini-batch sizes for Dirichlet
problem in 2D.

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 11

Tables 2 and 3. When the size of mini-batches increases, the advantage of QMC method

over MC method reduces. This is natural in the sense that both methods converge when

the number of sampling points increases. We further plot detained training processes

of QMC and MC methods in Fig. 3. Throughout the paper, the log function uses e as the

base. Clearly, QMC sampling reduces the magnitude of error of MC method by about

three times on average with the same mini-batch size for the 2D problem.

Fig. 4 plots relative L2 error in terms of mini-batch size for QMC and MC methods

for (3.2) from 2D to 16D. A clear evidence is that QMC method always outperforms

MC method and the error reduction is significant.

From a different perspective, in order to achieve the same approximation accu-

racy, we may ask how much cheaper QMC method is compared to MC method. To do

this, we fix the mini-batch size in MC method to be 10000 and 100000, and check the

corresponding size in QMC method for the same accuracy requirement. Results are

recorded in Table 4, and detailed training processes in 2D are plotted in Fig. 5. For the

a) 2D b) 4D

c) 8D d) 16D

Figure 4: Relative L
2 error versus mini-batch size in QMC and MC methods for (3.2) from 2D to 16D.

12 J. Chen et al.

a) 10000 (MC) vs 500 (QMC) b) 100000 (MC) vs 2000 (QMC)

Figure 5: Detailed training processes in QMC and MC methods for Dirichlet problem in 2D with different
mini-batch sizes for the same accuracy requirement.

same accuracy requirement, compared to MC method, QMC method reduces the size

of training data set by more than two orders of magnitude. Also in Table 4, we record

CPU time which stands for the execution time of one iteration in the SGD method using

QMC or MC method. Since runtime of the optimiser at each iteration is dominated by

the approximation of the loss function where QMC or MC method is applied (deter-

mined by the number of samples) and the evaluation of the gradient with respect to

parameters (determined by the number of parameters), we observe that CPU time with

QMC method is about one fifth of that with MC method on average.

All above results show that QMC method always performs better than MC method,

typically by several times in terms of accuracy when the same mini-batch size is en-

forced or by more than two orders of magnitude in terms of efficiency when the same

Table 4: Comparison of mini-batch sizes in QMC and MC methods for Dirichlet problem in different
dimensions when the same approximation accuracy is required. CPU time stands for the execution time of
one iteration in the SGD method using QMC or MC method.

Dimension

MC QMC
QMC time
MC timesize

error CPU
size

error CPU

×10−2 time(s) ×10−2 time(s)

2D
10000 1.3566 0.0201 500 1.7141 0.0175 87%

100000 0.7702 0.1927 2000 0.6149 0.0203 11%

4D
10000 0.1329 0.1122 500 1.8735 0.0167 15%

100000 0.8986 0.3020 4000 0.8076 0.0221 7 %

8D
10000 1.1551 0.1399 2000 1.1607 0.0210 15%

100000 0.8668 0.4012 10000 0.8139 0.1185 30%

16D
10000 1.1383 0.1718 1000 1.0472 0.0255 15%

100000 0.7993 0.5064 5000 0.6863 0.1387 27%

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 13

accuracy is required. However, their convergence rates with respect to both the itera-

tion number and the size of training data set seem to be the same, due to the ADAM

optimizer we use and the nonconvex nature of loss function.

3.2. A linear Neumann boundary condition problem

Consider the Neumann problem















−∆u+ π2u = 2π2
K
∑

k=1

cos(πxk), x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω

(3.4)

over Ω = [0, 1]K with the exact solution u(x) =
∑

k cos(πxk) and n being the unit

outward normal vector. For this problem, we still do not need to add any penalty term

for the boundary condition and the loss function is defined as

I(u) =

∫

Ω

(

1

2

(

|∇u(x)|2 + π2u(x)2
)

− f(x)u(x)

)

dx. (3.5)

The network structure is the same as before; see (2.8). Detailed setup is listed in

Table 5. Exact and trained solutions in 2D are visualized in Fig. 6. Relative L2 errors

in differential dimensions are recorded in Table 6 and the corresponding convergence

rates are shown in Table 7.

Fig. 7 plots detailed training processes of QMC and MC methods with different mini-

batch sizes in 2D. Similarly, QMC method outperforms MC method by several times in

terms of accuracy for the same size of training data set. Besides, for the same accuracy

requirement, QMC reduces the size of training data set by orders of magnitudes; see

Table 8 as well as Fig. 8 for details. Again, we observe that CPU time with QMC method

is about one fifth of that with MC method on average.

a) Exact solution b) Trained solution

Figure 6: Exact and trained solutions to problem (3.4) in 2D. The exact solution u(x) =
∑

2

k=1
cos(πxk)

and the approximate solution is trained with 5000 points (Sobol sequence) used at each iteration.

14 J. Chen et al.

Table 5: Detailed setup of the neural network used for Neumann problem in different dimensions, where m

denotes the number of nodes contained in each layer.

Dimension Blocks m Parameters

2 4 10 921

4 4 15 2011

8 4 30 7741

16 5 48 24385

Table 6: Relative L
2 errors in different dimensions with different mini-batch sizes for Neumann problem and

the convergence order is recorded with respect to 1

N
.

Dimension Mini-batch size
QMC MC

error(×10−2) order error(×10−2) order

2D

250 1.1218 2.9571

500 0.7484 0.58 2.6754 0.14

1000 0.4314 0.79 2.2572 0.25

2000 0.3140 0.46 1.9914 0.18

4D

500 1.4219 3.9305

1000 0.9185 0.63 3.6990 0.09

2000 0.3289 1.48 2.4779 0.58

4000 0.2649 0.24 2.0152 0.23

8D

500 3.8542 7.7874

1000 2.7353 0.49 6.2379 0.32

2000 2.4249 0.17 5.4659 0.19

10000 1.8235 0.18 2.6860 0.44

16D

1000 3.2668 6.0573

2000 2.9308 0.16 5.8566 0.05

5000 2.9205 0.01 4.8035 0.22

10000 1.5636 0.90 3.8518 0.32

Table 7: Fitted convergence rates of the relative L
2 error with respect to the mini-batch size in different

dimensions (recorded in terms of 1

N
) for Neumann problem.

Dimension QMC MC

2D 0.63 0.20

4D 0.78 0.32

8D 0.23 0.35

16D 0.28 0.20

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 15

a) 250 b) 500

c) 1000 d) 2000

Figure 7: Detailed training processes of QMC and MC methods with different mini-batch sizes for Neumann
problem in 2D.

a) 10000 (MC) vs 250 (QMC) b) 100000 (MC) vs 500 (QMC)

Figure 8: Detailed training processes in QMC and MC methods for Neumann problem in 2D with different
mini-batch sizes for the same accuracy requirement.

16 J. Chen et al.

Table 8: Comparison of mini-batch sizes in QMC and MC methods for Neumann problem in different
dimensions when the same approximation accuracy is required. CPU time stands for the execution time of
one iteration in the SGD method using QMC or MC method.

Dimension

MC QMC
QMC time
MC timesize

error CPU
size

error CPU

×10−2 time(s) ×10−2 time(s)

2D
10000 1.3138 0.0264 250 1.1218 0.0208 79%

100000 0.6536 0.2967 500 0.7484 0.0228 8%

4D
10000 2.0778 0.1372 500 1.4218 0.0234 17%

100000 0.4622 0.3082 2000 0.3289 0.5116 61%

8D
10000 2.6860 0.1496 1000 2.7353 0.0264 17%

100000 2.5154 0.4931 2000 2.4249 0.0256 5%

16D
10000 3.8518 0.1756 1000 3.2668 0.0261 14%

100000 2.7805 0.5116 5000 2.9205 0.1314 26%

Generally speaking, not every Neumann problem can be modeled by a loss function

without the penalty term on the boundary. Therefore, for general Neumann problem






−∆u+ π2u = f(x), x ∈ Ω,
∂u

∂x
= g(x), x ∈ ∂Ω,

(3.6)

we add the penalty term into the loss function (3.5)

loss = I(u) + β

∫

∂Ω

(

∂u

∂x
− g(x)

)2

dx. (3.7)

The first term is a volume integral while the second term is a boundary integral. There-

fore, we have to sample these two terms separately: one for I(u) in Ω and the other

for the penalty term on the boundary. In principle, we need to optimize sizes of both

training sets in order to minimize the approximation error. Practically, we find that

QMC method always performs better than MC method. In Table 9, we show relative

L2 errors in different dimensions with different mini-batch sizes for Neumann problem

with the penalty term on the boundary.

Fig. 9 plots detailed training processes of QMC and MC methods with different

mini-batch sizes for Neumann problem with the penalty term on the boundary in 2D.

Size of the training data set for the penalty term is fixed to be 100 in all cases.

3.3. Problem with less regular solution

Consider the problem over Ω = [0, 1]K , defined as






−∆u+ π2u = f(x), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω

(3.8)

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 17

a) 250 b) 500

c) 1000 d) 2000

Figure 9: Detailed training processes of QMC and MC methods with different mini-batch sizes for Neumann
problem with the penalty term over the boundary in 2D.

with the exact solution u(x) =
∑K

k=1 cos(πx
2.5
k), whose third derivative is singular at

the origin. The loss function is the same as (3.5). Detailed setup is listed in Table 10.

Relative L2 errors in different dimensions are recorded in Table 11. Detailed training

processes of QMC and MC methods with different mini-batch sizes in 2D are shown in

Fig. 10. Again, QMC method outperforms MC method in this case.

3.4. A nonlinear problem

Consider the nonlinear problem

{

−∆u+ u3 = f(x,) x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(3.9)

over the unit sphere Ω = {x : |x| < 1} with the exact solution u(x) = sin(π2 (1− |x|)).

18 J. Chen et al.

Table 9: Relative L
2 errors in different dimensions with different mini-batch sizes for Neumann problem

with the penalty term on the boundary.

Dimension
Mini-batch size Relative L2 error

Volume Boundary QMC(×10−2) MC(×10−2)

2D

250 100 0.8079 1.6151

500 100 0.4176 1.5027

1000 100 0.2086 1.0101

2000 100 0.1470 0.8327

4D

500 100 0.4434 1.7622

1000 100 0.3729 1.2550

2000 100 0.3160 0.9799

4000 100 0.2651 0.7530

8D

500 100 1.1770 3.8285

1000 100 0.8989 3.0505

2000 100 0.8780 2.9661

10000 100 0.7643 1.6552

16D

1000 100 1.2181 3.1398

2000 100 1.1250 2.2055

5000 100 0.8998 1.9235

10000 100 0.7698 1.5244

For this problem, the loss function is defined as

I(u) =

∫

Ω

(

1

2
|∇u(x)|2 + 1

4
u(x)4 − f(x)u(x)

)

dx. (3.10)

Similar to (3.3), we construct the network in the form of

{

ûθ(x) = A(x) · fθ(x), x ∈ Ω,

A(x) = 1− |x|, x ∈ Ω.
(3.11)

The detailed setup is listed in Table 12. Relative L2 errors in different dimensions

are recorded in Table 13. Detailed training processes of QMC and MC methods with

different mini-batch sizes in 2D are shown in Fig. 11. Note that the exact solution

here is only continuously differentiable and its mixed first derivative does not exist at

the origin. It is known that QMC method works with provable convergence when the

mixed first derivative of the integrand exists and is bounded [9]. Therefore, we should

not expect that QMC method works better than MC method in this scenario. To our

surprise, as demonstrated later, QMC method outperforms MC method consistently.

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 19

Table 10: Detailed setup of the neural network used for the linear problem with less regular solution in
different dimensions, where m denotes the number of nodes contained in each layer.

Dimension Blocks m Parameters

2 3 8 465

4 3 16 1729

8 3 16 1793

16 3 20 1921

Table 11: Relative L
2 errors in different dimensions with different mini-batch sizes for the linear problem

with less regular solution and the convergence order is recorded with respect to 1

N
.

Dimension Mini-batch size
QMC MC

error(×10−2) order error(×10−2) order

2D

100 2.0921 4.9784

500 0.9959 0.4612 2.8479 0.3466

1000 0.6002 0.7306 2.4802 0.2003

5000 0.2653 0.5071 1.4717 0.3242

4D

500 1.1917 3.1804

1000 1.1742 0.0213 2.7650 0.2019

5000 0.5670 0.4523 1.7535 0.2896

10000 0.4903 0.2094 1.5728 0.15689

8D

500 1.9235 3.8439

1000 1.6064 0.2598 3.1926 0.2678

5000 1.0859 0.2433 1.8432 0.3413

10000 0.8102 0.4225 1.7183 0.1012

16D

5000 0.6315 1.9112

10000 0.6258 0.1298 1.4771 0.3718

20000 0.4931 0.3439 1.3127 0.1702

25000 0.3266 1.4523 1.2121 0.3574

Table 12: Detailed setup of the neural network used for the nonlinear problem in different dimensions, where
m denotes the number of nodes contained in each layer.

Dimension Blocks m Parameters

2 3 8 465

4 3 12 1009

6 3 14 1373

8 3 16 1793

20 J. Chen et al.

a) 100 b) 500

c) 1000 d) 5000

Figure 10: Detailed training processes of QMC and MC methods with different mini-batch sizes for the
linear problem with less regular solution in 2D.

4. Convergence analysis

To understand numerical results in Section 3 from a theoretical perspective, in this

section, we shall analyze the convergence behavior of SGD method with QMC sampling

and understand how the size of training data set affects the convergence for different

sampling strategies. Our analysis follows [2], but differs in terms of assumptions. Un-

der the boundedness assumption of parameter sequence, we prove the Lipschitz con-

tinuity of loss function for smooth activation functions, such as (2.6), instead of the

direct assumption of Lipschitz continuity of loss function. From a practical perspective,

our assumption can be easily verified during the iteration while the Lipschitz continuity

is difficult to be verified. Moreover, we prove the convergence of function sequences

generated by MC and QMC methods under a stronger assumption on the second mo-

ment of the stochastic vector used in the SGD method, which explicitly characterizes

the dependence of convergence rate on both the size of training data set and the it-

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 21

Table 13: Relative L2 errors in different dimensions with different mini-batch sizes for the nonlinear problem
and the convergence order is recorded with respect to 1

N
.

Dimension mini-batch size
QMC MC

error(×10−2) order error(×10−2) order

2D

500 0.4762 1.7222

1000 0.3249 0.5516 1.4203 0.2781

5000 0.2897 0.0713 0.9195 0.2701

10000 0.1893 0.6136 0.8042 0.1933

4D

1000 1.1532 1.9681

5000 0.8452 0.1931 1.4303 0.1967

10000 0.7778 0.1199 1.1198 0.2583

15000 0.6753 0.3484 1.0651 0.2919

6D

5000 0.9728 2.4343

10000 0.6227 0.6451 2.3791 0.3734

15000 0.5340 0.3789 2.2035 0.3928

20000 0.4272 0.7752 2.1200 0.1346

8D

5000 3.6587 5.6010

10000 1.6207 1.1747 4.1136 0.4452

15000 1.3479 0.4546 3.2380 0.5903

20000 1.7102 0.8277 2.9620 0.3096

eration number. We shall stress that the convexity assumption of loss functions does

not hold practically. Even when the loss function for the original PDE is convex in the

functional space, the problem loses its convexity when DNN approximations are used.

Therefore, the analysis here shows how the convergence rates are in the ideal case. But

in practice, numerical results of both MC and QMC do not agree well with theoretical

results.

For convenience, derivatives are taken with respect to the parameter set if subscripts

are not specified in what follows. We start with the following assumption.

Assumption 4.1 (Boundedness of the iteration sequence). The iteration sequence

{θi}∞i=0 is bounded, i.e., ∀i ∈ N
+,

‖θi‖2 ≤ Cθ.

A direct consequence of Assumption 4.1 is the existence of convergent sub-sequen-

ces. It will be shown later that the whole sequence of function values generated by the

SGD method with a sampling strategy converges if the loss function is strongly convex

with respect to θ. In practice, this assumption can be verified easily in the iteration.

Furthermore, we choose a C∞ activation function σ(x); see (2.6). Consequently, the

residual network also belongs to C∞ with respect to both θ and x. Therefore, the

Lipschitz continuity of the approximate solution by the neural network is guaranteed

in a bounded domain.

22 J. Chen et al.

a) 500 b) 1000

c) 5000 d) 10000

Figure 11: Detailed training processes of QMC and MC methods with different mini-batch sizes for the
nonlinear problem in 2D.

Lemma 4.1. If the activation function belongs to C∞(Ω) with the bounded domain Ω,

then under Assumption 4.1 there exist constants L0, L1 and L2 such that

‖∇ûθ −∇ûθ̄‖2 ≤ L0‖θ − θ̄‖2,
‖∇xûθ −∇xûθ̄‖2 ≤ L1‖θ − θ̄‖2,
‖∇∇xûθ −∇∇xûθ̄‖2 ≤ L2‖θ − θ̄‖2

for any θ, θ̄ ∈ {θi}∞i=1 and x ∈ Ω.

A natural corollary of Lemma 4.1 is that there exist constants M1 and M2 such that

‖∇xûθ(x)‖2 ≤ M1, ‖∇∇xûθ(x)‖2 ≤ M2 (4.1)

for any θ ∈ {θi}∞i=1 and x ∈ Ω.

Remember that the above results hold for smooth activation functions, but do not

hold for ReLU activation function. Then we can only expect the boundness of ∇xûθ(x)

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 23

and ∇∇xûθ(x), instead of Lipschitz continuity. For example, consider the simplest

network with two layers. For the ReLU activation function [26], there exists a constant

M depending on Ω such that

‖∇ûθ −∇ûθ̄‖2 ≤ L0‖θ − θ̄‖2 +M. (4.2)

Based on Lipschitz continuity of the neural network solution and boundedness of

derivatives, Lipschitz continuity of the loss function can be proven.

Theorem 4.1 (Lipschitz continuity of the loss function). For any θ and θ̄, the loss func-

tion of the neural network satisfies

‖∇I(θ)−∇I(θ̄)‖2 ≤ L‖θ − θ̄‖2. (4.3)

Proof. From (2.3), we have

∇I(θ) =

∫

Ω
∇xûθ(x)

T · ∇∇xûθ(x)dx−
∫

Ω
f(x)∇ûθ(x)dx.

By the triangle inequality, we have

‖∇I(θ)−∇I(θ̄)‖2 ≤
∥

∥

∥

∥

∫

Ω

(

∇∇xûθ(x) · ∇xûθ(x)−∇∇xûθ(x) · ∇xûθ̄(x)
)

dx

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

Ω

(

∇∇xûθ(x) · ∇xûθ̄(x)−∇∇xûθ̄(x) · ∇xûθ̄(x)
)

dx

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

Ω
f(x)

(

∇ûθ(x)−∇ûθ̄(x)
)

dx

∥

∥

∥

∥

2

≤ M2L1‖θ − θ̄‖2 +M1L2‖θ − θ̄‖2 + L0max
x∈Ω

|f(x)| ‖θ − θ̄‖2

≤ L‖θ − θ̄‖2

with L = M2L1 +M1L2 + L0maxx∈Ω |f(x)|.
And an important consequence of the Theorem 4.1 is that for ∀θ, θ̄ ∈ {θi}∞i=1,

I(θ) ≤ I(θ̄) +∇I(θ̄)T (θ − θ̄) +
1

2
L‖θ − θ̄‖22. (4.4)

To proceed, we need the following assumptions.

Assumption 4.2 (First and second moment assumption). For the stochastic vector,

assume that the first and second moments satisfy

• There exists 0 < µ ≤ µG such that, ∀i ∈ N
+,

∇I(θi)
T
Eξi [g(θi, ξi)] ≥ µ

(

1 + r(N)
)

‖∇I(θi)‖22, (4.5)

‖Eξi [g(θi, ξi)]‖2 ≤ µG

(

1 + r(N)
)

‖∇I(θi)‖2. (4.6)

24 J. Chen et al.

• For the second moment, there exist CV ≥ 0 and MV ≥ 0 such that, ∀i ∈ N
+,

Vξi [g(θi, ξi)] ≤ CV r(N) +MV

(

1 + r(N)
)

‖∇I(θi)‖22, (4.7)

where

r(N) =
(

D(PN)
)2
, r(N) = O

(

1

N

)

for MC sampling and

r(N) = O
(

(

ln(N)
)2K

N2

)

for QMC sampling.

Note that g(θi, ξi) is an unbiased estimate of ∇I(θi) as N → ∞ when µ = µG = 1
in Assumption 4.2. Moreover, according to (4.7), we have

Eξi

[

‖g(θi, ξi)‖22
]

= Vξi [g(θi, ξi)] + ‖Eξi [g(θi, ξi)]‖22
≤ CV r(N) +MG(1 + r(N))‖∇I(θi)‖22

with MG = MV + µ2
G(1 + r(N)). For a fixed stepsize αi = α, according to (4.4), we

have

Eξi [I(θi+1)]− I(θi)

≤ L

2
α2CV r(N)− α

(

µ− L

2
αMG

)

(

1 + r(N)
)

‖∇I(θi)‖22. (4.8)

Assumption 4.3 (Strong convexity). The loss function I(θ) is strongly convex with

respect to θ, i.e., there exists a constant c such that

I(θ̄) ≥ I(θ) +∇I(θ)T (θ̄ − θ) +
c

2
‖θ̄ − θ‖22

for any θ, θ̄ ∈ {θi}∞i=1.

The strong convexity assumption is necessary for the convergence analysis of SGD

method. However, due to function compositions and nonlinear activation functions,

this assumption does not hold for DNNs. We will come back to this issue at the end of

the section.

Following [2], if I(θ) is strongly convex and θ∗ is the unique minimizer, then for

any θ ∈ {θi}∞i=1 we have

2c
(

I(θ)− I(θ∗)
)

≤ ‖∇I(θ)‖22 (4.9)

with c ≤ L.

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 25

Theorem 4.2 (Strongly convex loss function, fixed stepsize, MC and QMC samplings).

Let the data set PN = {x1, x2, . . . , xN} ⊂ Ω be generated by MC or QMC method, the

stepsize αi = α be a constant satisfying

0 < α ≤ µ

LMG
.

Under Assumptions 4.1-4.3, the expected optimality gap satisfies

lim
i→∞

E[I(θi)− I(θ∗)] =
αLCV

2cµ
r(N) (4.10)

with θ∗ being the unique minimizer.

Proof. Using (4.8) and (4.9), for any i ∈ N, we have

Eξi [I(θi+1)]− I(θi) ≤
L

2
α2CV r(N)− α

(

µ− L

2
αMG

)

(

1 + r(N)
)

‖∇I(θi)‖22

≤ L

2
α2CV r(N)− µα

2

(

1 + r(N)
)

‖∇I(θi)‖22

≤ L

2
α2CV r(N)− cµα

(

1 + r(N)
)(

I(θi)− I(θ∗)
)

≤ L

2
α2CV r(N)− cµα

(

I(θi)− I(θ∗)
)

,

since I(θi) − I(θ∗) ≥ 0 holds under the assumption of strongly convexity. Adding

I(θi)− I(θ∗) to both sides of the above inequality and taking total expectation yields

E[I(θi+1)− I(θ∗)] ≤ (1− cµα)E[I(θi)− I(θ∗)] +
L

2
α2CV r(N).

Subtracting αLCV

2cµ r(N) from both sides produces

E[I(θi+1)− I(θ∗)]− αLCV

2cµ
r(N) ≤ (1− cµα)

(

E[I(θi)− I(θ∗)]− αLCV

2cµ
r(N)

)

.

Note that

0 < cµα ≤ cµ2

LMG
≤ cµ2

Lµ2
=

c

L
≤ 1.

A recursive argument yields

E[I(θi+1)− I(θ∗)]− αLCV

2cµ
r(N) ≤ (1− cµα)i

(

E[I(θ1)− I(θ∗)]− αLCV

2cµ
r(N)

)

,

and thus

lim
i→∞

E[I(θi)− I(θ∗)] =
αLCV

2cµ
r(N).

Theorem 4.2 provides a quantitative estimate for the accuracy of sampling strategies

on the convergence rate of the iteration sequence. Regardless of the sampling strategy,

the convergence rate is linear which is determined by the SGD method.

26 J. Chen et al.

Remark 4.1. When N → ∞, for both MC and QMC methods, we have r(N) → 0. From

Theorem 4.2, we conclude that

lim
N→∞

lim
i→∞

E[I(θi)− I(θ∗)] = 0.

In practice, however, with the increasing size of training data set, the gap usually does

not tend to 0 under the fixed stepsize condition. We attributes this to the irrationality

of (4.7). Instead, (4.7) shall be relaxed to [2]

Vξi [g(θi, ξi)] ≤ CV +MV

(

1 + r(N)
)

‖∇I(θi)‖22.

Then we have

lim
N→∞

lim
i→∞

E[I(θi)− I(θ∗)] =
αLCV

2cµ
,

which implies the convergence of the sequence of function values near the optimal

value. Therefore, an optimizer with fixed stepsize is generally not the best choice [2].

Instead, the SGD method with diminishing stepsize is popular in real applications, such

as ADAM method [20] used in the implementation.

Remark 4.2. From the convergence analysis (4.10), we expect that QMC method out-

performs MC method in terms of convergence order. It is reasonable to find from

Tables 3, 7, 11 and 13 that QMC method has better rates than MC method. However,

numerical convergence rates are not as significant as theoretical convergence rates for

both QMC and MC methods. We attribute this difference to the nonconvexity of the

loss function and the above analysis relies crucially on the strong convexity assumption

of the same function (Assumption 4.3). Whatever, for the same accuracy requirement

in practice, QMC method outperforms MC method in terms of efficiency by orders of

magnitude. Therefore, we recommend the usage of QMC sampling when solving PDEs

by DNNs whenever a sampling strategy is needed.

5. Conclusion

In this paper, we have proposed to approximate the loss function using quasi-Monte

Carlo method, instead of Monte Carlo method that is commonly used when solving

PDEs by DNNs. Numerical results based on deep Ritz method have shown the sig-

nificant advantage of quasi-Monte Carlo method in terms of accuracy or efficiency.

All the codes that generate numerical results included in this work are available from

https://github.com/Lyupinpin/DeepRitzMethod.

Theoretically, we have proved the convergence of neural network solver based on

quasi-Monte Carlo sampling in terms of the sampling size and the iteration number.

Although there are still some practical issues such as the nonconvexity of the loss func-

tion, our analysis does provide a comprehensive understanding of why quasi-Monte

Carlo method always outperforms Monte-Carlo method and suggests the usage of the

former whenever an approximation of high-dimensional integrals is needed.

Quasi-Monte Carlo Sampling for Solving PDE by Deep Neural Networks 27

Acknowledgements

This work is supported in part by the grants NSFC (No. 11971021) and by Na-

tional Key R&D Program of China (No. 2018YF645B0204404) (J. Chen), NSFC (No.

11501399) (R. Du). P. Li is grateful to Ditian Zhang for very helpful discussions and ac-

knowledges the financial support of the Postgraduate Research and Practice Innovation

Program of Jiangsu Province (Project KYCX20 2711). L. Lyu acknowledges the finan-

cial support of Undergraduate Training Program for Innovation and Entrepreneurship,

Soochow University (Project 201810285019Z). Part of the work was done when L. Lyu

was doing a summer internship at Department of Mathematics, Hong Kong University

of Science and Technology. L. Lyu would like to thank its hospitality.

References

[1] C. BECK, W. E, AND A. JENTZEN, Machine learning approximation algorithms for

high-dimensional fully nonlinear partial differential equations and second-order backward

stochastic differential equations, J. Nonlinear Sci., 29 (2019), 1563–1619.

[2] L. BOTTOU, F. E. CURTIS, AND J. NOCEDAL, Optimization for large-scale machine learning,
SIAM Review, 60 (2018), 223–311.

[3] S. C. BRENNER AND L. R. SCOOT, The Mathematical Theory of Finite Element Method,
Springer, 2007.

[4] A. BUCHHOLZ, F. WENZEL, AND S. MANDT, Quasi-Monte Carlo variational inference, arXiv,

1807.01604 (2018).
[5] H.-J. BUNGARTZ AND M. GRIEBEL, Sparse grids, Acta Numer., 13 (2004), 147–269.

[6] R. CAFLISCH, Monte Carlo and Quasi-Monte Carlo Methods, Vol. 7, Cambridge University

Press.
[7] J. A. G. CERVERA, Solution of the Black-Scholes equation using artificial neural networks,

J. Phys. Conf. Ser., 1221 (2019), 012044.
[8] M. DAUGE AND R. STEVENSON, Sparse tensor product wavelet approximation of singular

functions, SIAM J. Math. Anal., 42 (2010), 2203–2228.

[9] J. DICK, F. Y. KUO, AND I. H. SLOAN, High-dimensional integration: The quasi-Monte Carlo

way, Acta Numer., 22 (2013), 133–288.

[10] W. E, J. HAN, AND A. JENTZEN, Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic differential
equations, Commun. Math. Stat., 5 (2017), 349–380.

[11] W. E AND B. YU, The deep Ritz method: A deep learning-based numerical algorithm for

solving variational problems, Commun. Math. Stat., 6 (2018), 1–12.

[12] Y. FAN, F.-F. JORDI, L. LIN, L. YING, AND L. ZEPEDA-NÚÑEZ, A multiscale neural network

based on hierarchical nested bases, Res. Math. Sci., 6 (2019), 21.
[13] H. GEOFFREY, D. LI, Y. DONG, D. GEORGE, M. ABDEL-RAHMAN, J. NAVDEEP, S. ANDREW,

V. VINCENT, N. PATRICK, K. BRIAN, AND S. TARA, Deep neural networks for acoustic mod-

eling in speech recognition, IEEE Signal Process. Mag., 29 (2012), 82–97.
[14] T. GERSTNER AND M. GRIEBEL, Numerical integration using sparse grids, Numer. Algo-

rithms, 18 (1998), 209.
[15] C. GIUSEPPE AND T. MATTHIAS, Solving the quantum many-body problem with artificial

neural networks, Science, 355 (2017), 602–606.

[16] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, MIT Press, 2016.

28 J. Chen et al.

[17] J. HAN, A. JENTZEN, AND W. E, Solving high-dimensional partial differential equations
using deep learning, Proceedings of the National Academy of Sciences of the United States

of America, 115 (2018), 8505–8510.

[18] J. HAN, L. ZHANG, AND W. E, Solving many-electron Schrödinger equation using deep

neural networks, J. Comput. Phys., 399 (2019).

[19] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition,
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2 (2016),

770–778.

[20] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, CoRR, 1412.6980
(2014).

[21] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep con-

volutional neural networks, Commun. ACM, 60 (2012), 84–90.
[22] E. C. LAWRENCE, Partial Differential Equations (Second Edition), AMS, 2010.

[23] R. J. LEVEQUE, Finite Difference Methods for Ordinary and Partial Differential Equations:

Steady-State and Time-Dependent Problems, SIAM, 2007.

[24] J. S. LIU, Monte Carlo strategies in scientific computing, Springer Science & Business Me-

dia, 2008.
[25] L. LYU, Z. ZHANG, AND J. CHEN, A QMC-deep learning method for diffusivity estimation in

random domains, Numer. Math. Theor. Meth. Appl., 13 (2020), 908–927.

[26] V. NAIR AND G. E. HINTON, Rectified linear units improve restricted boltzmann machines, In
Proceedings of the 27th international conference on machine learning (ICML-10), 2010,

807–814.
[27] H. NIEDERREITER, Random Number Generation and Quasi-Monte Carlo Methods, SIAM,

1992.

[28] Y. OGATA, A Monte Carlo method for high dimensional integration, Numer. Math. (Hei-
delb), 55 (1989), 137–157.

[29] P. RAMACHANDRAN, B. ZOPH, AND Q. V. LE, Searching for activation functions, arXiv,

1710.05941 (2017).
[30] R. SARIKAYA, G. E. HINTON, AND A. DEORAS, Application of deep belief networks for nat-

ural language understanding, IEEE Trans. Audio Speech Lang. Process., 22 (2014), 778–
784.

[31] J. SHEN, T. TANG, AND L.-L. WANG, Spectral Methods: Algorithm, Analysis and Applica-

tion, Springer, 2011.
[32] J. SIRIGNANO AND K. SPILIOPOULOS, DGM: A deep learning algorithm for solving partial

differential equations, J. Comput. Phys., 375 (2018), 1339–1364.

[33] I. M. SOBOL, Uniformly distributed sequences with an additional uniform property, USSR
Comput. Maths. Math. Phys., 16 (1976), 236–242.

[34] B. TUFFIN, Randomization of Quasi-Monte Carlo methods for error estimation: survey and
normal approximation, Monte Carlo Methods Appl., 10 (2004), 617–628.

[35] T. WANG, D. J. WU, A. COATES, AND A. Y. NG, End-to-end text recognition with con-

volutional neural networks, Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), (2012), 3304–3308.

