Published online 4 November 2020

A Linear Hybridization of Dai-Yuan and Hestenes-Stiefel Conjugate Gradient Method for Unconstrained Optimization

Sindhu Narayanan and P. Kaelo*

Department of Mathematics, University of Botswana, Private Bag UB00704, Gaborone, Botswana

Received 4 April 2020; Accepted (in revised version) 19 October 2020

Abstract. Conjugate gradient methods are interesting iterative methods that solve large scale unconstrained optimization problems. A lot of recent research has thus focussed on developing a number of conjugate gradient methods that are more effective. In this paper, we propose another hybrid conjugate gradient method as a linear combination of Dai-Yuan (DY) method and the Hestenes-Stiefel (HS) method. The sufficient descent condition and the global convergence of this method are established using the generalized Wolfe line search conditions. Compared to the other conjugate gradient methods, the proposed method gives good numerical results and is effective.

AMS subject classifications: 90C06, 90C30, 65K05

Key words: Unconstrained optimization, conjugate gradient method, global convergence.

1. Introduction

Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x), \tag{1.1}$$

where $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a continuously differentiable function that is bounded below. There are several numerical methods for solving the unconstrained optimization problem (1.1). These include conjugate gradient methods [1, 6, 9, 11, 19], Newton methods [18, 39], quasi-Newton methods [8, 12, 33, 37, 42, 43] and steepest descent methods [7, 22, 26, 49]. These methods are iterative, that is, given an initial guess $x_0 \in \mathbb{R}^n$, they generate a sequence $\{x_k\}$ using

http://www.global-sci.org/nmtma

^{*}Corresponding author. *Email address:* kaelop@ub.ac.bw (P. Kaelo)

S. Narayanan and P. Kaelo

$$x_{k+1} = x_k + \alpha_k d_k, \tag{1.2}$$

where $\alpha_k > 0$ is a step length and d_k is a descent direction. They also differ according to how the search direction d_k is obtained or updated. Newton and quasi-Newton methods require the second derivative information for updating the direction d_k and hence have good convergence rate. Conjugate gradient and steepest descent methods only require the first derivative information, which makes them more applicable to solving large-scale optimization problems.

The step length $\alpha_k > 0$ is chosen to satisfy certain line search conditions. Two of the usually used line searches are the strong Wolfe conditions

$$\begin{cases} f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k g_k^T d_k, \\ \left| g(x_k + \alpha_k d_k)^T d_k \right| \le \sigma_1 \left| g_k^T d_k \right|, \end{cases}$$
(1.3)

and the weak Wolfe conditions

$$\begin{cases} f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k g_k^T d_k, \\ g(x_k + \alpha_k d_k)^T d_k \ge \sigma_1 g_k^T d_k, \end{cases}$$
(1.4)

where $0 < \sigma < \sigma_1 < 1$.

In this paper, we consider solving problem (1.1) using a conjugate gradient method. Conjugate gradient methods generate the next iterate x_{k+1} by updating the direction d_k as

$$d_k = \begin{cases} -g_k, & k = 0, \\ -g_k + \beta_k d_{k-1}, & k \ge 1, \end{cases}$$
(1.5)

where $g_k = \nabla f(x_k)$ is the gradient of the function f at x_k , and $\beta_k \in \mathbb{R}$ is a parameter known as the conjugate gradient coefficient. Different choices of β_k lead to different conjugate gradient methods, with the most well known methods being the Fletcher-Reeves (FR) [17], Polak-Ribière-Polyak (PRP) [36, 38], conjugate descent (CD) [16], Dai-Yuan (DY) [10], Liu-Storey (LS) [29] and Hestenes-Stiefel (HS) [21]. The PRP, LS and HS conjugate gradient methods have been shown to be numerically efficient while the others are theoretically effective. Other conjugate gradient methods have also been suggested in the literature [5,13,24,28,30,34,35,47] and a number of them are either modifications or hybridizations of the above methods. For instance, Wei *et al.* [44] proposed a conjugate gradient method

$$\beta_k^{WYL} = \frac{g_k^T \left(g_k - \frac{\|g_k\|}{\|g_{k-1}\|} g_{k-1}\right)}{\|g_{k-1}\|^2},$$
(1.6)

which is a modification of the PRP method. It is globally convergent under weak Wolfe line search and numerically better than the PRP method. Similarly, Yao *et al.* [46] extended the above modification to HS method, that is,

$$\beta_k^{VHS} = \frac{g_k^T \left(g_k - \frac{\|g_k\|}{\|g_{k-1}\|} g_{k-1}\right)}{d_{k-1}^T y_{k-1}},\tag{1.7}$$

where $y_{k-1} = g_k - g_{k-1}$, and showed it generates sufficient descent directions.

Another method was proposed by Li and Zhao [25] where

$$\beta_k^{P-W} = \max\left\{\beta_k^{PRP}, \beta_k^{WYL}\right\},\tag{1.8}$$

which is a hybridization of the PRP and WYL methods. This method is also globally convergent under weak Wolfe conditions and is numerically effective. Liu [27] modified β^{CD} as

$$\beta_k = \beta^{CD} + \min\left\{0, \varphi_k, \beta^{CD}\right\},\tag{1.9}$$

where

$$\varphi_k = -\frac{g_k^T d_{k-1}}{d_{k-1}(g_k - g_{k-1})}.$$
(1.10)

The global convergence and numerical experiments of this method are done under generalized Wolfe conditions

$$\begin{cases} f(x_k + \alpha_k d_k) \le f(x_k) + \sigma \alpha_k g_k^T d_k, \\ \sigma_1 g_k^T d_k \le g(x_k + \alpha_k d_k)^T d_k \le -\sigma_2 g_k^T d_k, \end{cases}$$
(1.11)

where $0 < \sigma < \sigma_1 < 1$ and $\sigma_2 \ge 0$.

In 2008 and 2009, Andrei proposed two hybrids in [2] and [4], respectively,

$$\beta_k^C = (1 - \theta_k)\beta_k^{HS} + \theta_k \beta_k^{DY}, \qquad (1.12)$$

which is a convex combination of HS and DY, and

$$\beta_k^N = (1 - \theta_k)\beta_k^{PRP} + \theta_k\beta_k^{FR}, \qquad (1.13)$$

which combines PRP and FR methods. These methods are globally convergent under strong Wolfe conditions and standard Wolfe conditions, respectively. Other hybrids include those of [1,6,9,15,20,23,35,40,41,48].

In this paper we present another hybrid conjugate gradient method that combines the good features of DY, VHS and β_k^{**} by Mo *et al.* [31]. This method is presented in the next section. The rest of the paper is organised as follows. The sufficient decent condition and the global convergence of the proposed method is presented in Section 3. We then compare the numerical results of the new method with some other existing methods in Section 4. Finally, conclusion is presented in Section 5.

2. Proposed hybrid method

In this section we develop a new hybrid conjugate gradient method guided by the works of Mo *et al.* [31], and Xu and Kong [45]. In 2007, Mo *et al.* [31] proposed a hybrid method with

$$\beta_k = \max\left\{0, \min\left\{\beta_k^{HS}, \beta_k^{DY}, \beta_k^{**}\right\}\right\},\tag{2.1}$$

S. Narayanan and P. Kaelo

where

$$\beta_k^{**} = \beta_k^{HS} + \frac{2g_k^T g_{k-1}}{d_{k-1}^T y_{k-1}}.$$
(2.2)

With the generalized Wolfe conditions (1.11), this method was shown to be globally convergent. Xu and Kong [45] proposed a linear combination of HS and DY methods as

$$\beta_{k} = \begin{cases} a_{1}\beta_{k}^{DY} + a_{2}\beta_{k}^{HS}, & \text{if } \|g_{k}\|^{2} > |g_{k}^{T}g_{k-1}|, \\ 0, & \text{otherwise}, \end{cases}$$
(2.3)

where a_1, a_2 are positive numbers which satisfy $0 < a_1 + 2a_2 < \frac{1}{1+\sigma_2} < 1$. To establish the method's global convergence, the authors suggested using the generalized Wolfe line search (1.11), when

$$d_{k-1}^T g_k \ge 0$$
 and $-\sigma_2 d_{k-1}^T g_{k-1} < -\sigma_2 d_{k-1}^T (g_{k-1} - g_k)$

and the modified Wolfe line search

(

$$\sigma_1 d_{k-1}^T g_{k-1} \le d_{k-1}^T g_k \le -\sigma_2 d_{k-1}^T (g_{k-1} - g_k),$$
(2.4)

when

$$d_{k-1}^T g_k < 0$$
, and $-\sigma_2 d_{k-1}^T (g_{k-1} - g_k) < -\sigma_2 d_{k-1}^T g_{k-1}$

Motivated by the above two methods, here we propose a new hybrid as a linear combination of VHS, β_k^{**} and DY methods as

$$\beta_{k}^{S_{1}} = \begin{cases} a_{1}\beta_{k}^{DY} + a_{2}\beta_{k}, & \text{if } \|g_{k}\|^{2} < |g_{k}^{T}g_{k-1}|, \\ \beta_{k}^{VHS}, & \text{otherwise,} \end{cases}$$
(2.5)

where

$$\beta_k = \max\left\{0, \min\left\{\beta_k^{VHS}, \beta_k^{**}\right\}\right\}$$

and a_1 and a_2 are positive constants such that $0 < a_1 + a_2 < \frac{1}{1+\sigma_2} < 1$ and $\sigma_2 \ge 0$ is as defined in (1.11). The sufficient descent condition and the global convergence of the method are established using the generalized Wolfe conditions (1.11). We describe the developed algorithm below.

Algorithm 2.1 A new linear combination of HS and DY Conjugate Gradient (NLCHSDY) method.

1: Give the initial point $x_0 \in \mathbb{R}^n$, tolerance $\epsilon > 0$ and set k = 0.

2: Set $g_0 = \nabla f(x_0)$. If $||g_0|| \le \epsilon$ stop.

- 3: for k = 0, 1, ... do
- 4: Compute d_k using (1.5).
- 5: Find α_k using (1.11).
- 6: Set $x_{k+1} = x_k + \alpha_k d_k$, and set k = k + 1.

7: If
$$||g_k|| \leq \epsilon$$
 stop.

8: Compute β_k using (2.5).

4

3. Convergence analysis

In this section we provide the sufficient descent condition of our new hybrid conjugate gradient method and establish its global convergence under the generalized Wolfe conditions (1.11).

Lemma 3.1. Let $\{g_k\}$ and $\{d_k\}$ be generated by Algorithm 2.1. Then

$$d_k^T g_k < 0, \quad \forall k \ge 0. \tag{3.1}$$

Proof. When k = 0, we have $d_k = -g_k$ which implies $d_0^T g_0 = -||g_0||^2 < 0$ satisfies (3.1). Now, we show it also holds for $k \ge 1$. Suppose the result holds for n = k - 1, that is, $d_{k-1}^T g_{k-1} < 0$. From $\beta_k = \max\{0, \min\{\beta_k^{VHS}, \beta_k^{**}\}\}$ we have $\beta_k \ge 0$. Also

$$\min\left\{\beta_k^{VHS}, \beta_k^{**}\right\} \le \frac{\|g_k\|^2}{d_{k-1}^T y_{k-1}} = \beta_k^{DY}.$$

Notice that from the line search (1.11) we have that

$$d_{k-1}^T y_{k-1} \ge (\sigma_1 - 1) d_{k-1}^T g_{k-1} > 0,$$

and since $0 < a_1 + a_2 < \frac{1}{1+\sigma_2} < 1$, we get that $0 \le \beta_k^{S_1} \le \beta_k^{DY}$. Now, for n = k, pre-multiplying both sides of $d_k = -g_k + \beta_k^{S_1} d_{k-1}$ by g_k^T it follows that

$$g_{k}^{T}d_{k} = -\|g_{k}\|^{2} + \beta_{k}^{S_{1}}g_{k}^{T}d_{k-1} \leq -\|g_{k}\|^{2} + \beta_{k}^{DY}g_{k}^{T}d_{k-1}$$

$$= \|g_{k}\|^{2} + \left(\frac{\|g_{k}\|^{2}}{d_{k-1}^{T}y_{k-1}}\right)g_{k}^{T}d_{k-1} = \left(-1 + \frac{g_{k}^{T}d_{k-1}}{d_{k-1}^{T}y_{k-1}}\right)\|g_{k}\|^{2}$$

$$= \left(\frac{g_{k-1}^{T}d_{k-1}}{d_{k-1}^{T}y_{k-1}}\right)\|g_{k}\|^{2} = \beta_{k}^{DY}g_{k-1}^{T}d_{k-1} < 0.$$
(3.2)

Thus, $g_k^T d_k < 0$ holds for all $k \ge 0$. This completes the proof.

Now to prove the convergence of our new hybrid method we need the following assumptions.

Assumption 3.1. Let the level set

$$\Omega = \{ x \in \mathbb{R}^n \mid f(x) \le f(x_0) \},\$$

where x_0 is the initial guess, be bounded. That is, there exists a positive constant B such that

$$\|x\| \le B, \quad \forall x \in \Omega. \tag{3.3}$$

Assumption 3.2. In some neighbourhood N of Ω the function f is continuously differentiable and its gradient g(x) is Lipschitz continuous, i.e. there exists a constant L > 0 such that

$$||g(x) - g(y)|| \le L||x - y||, \quad \forall x, y \in N.$$

Lemma 3.2. Consider any iteration of the form $x_{k+1} = x_k + \alpha_k d_k$, where d_k is a descent direction and α_k satisfies the generalized Wolfe conditions (1.11). Suppose Assumptions 3.1 and 3.2 hold, then either

$$\lim_{k \to \infty} \inf \|g_k\| = 0$$

or

$$\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < \infty.$$

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold, and let $\{g_k\}$ and $\{d_k\}$ be generated by Algorithm 2.1. Then

$$\lim_{k \to \infty} \inf \|g_k\| = 0. \tag{3.4}$$

Proof. We will prove this theorem by contradiction. Assume that (3.4) does not hold. Then there exists a constant $\gamma > 0$ such that

$$\|g_k\| \ge \gamma, \quad \forall k \ge 0. \tag{3.5}$$

Now, by squaring both sides of $d_k+g_k=\beta_k^{S_1}d_{k-1}$ and dividing throughout by $(g_k^Td_k)^2,$ we get

$$\frac{\|d_k\|^2}{(g_k^T d_k)^2} = \frac{(\beta_k^{S_1})^2 \|d_{k-1}\|^2}{(g_k^T d_k)^2} - \frac{2}{g_k^T d_k} - \frac{\|g_k\|^2}{(g_k^T d_k)^2} \\
= \frac{(\beta_k^{S_1})^2 \|d_{k-1}\|^2}{(g_k^T d_k)^2} - \left(\frac{1}{\|g_k\|} + \frac{\|g_k\|}{g_k^T d_k}\right)^2 + \frac{1}{\|g_k\|^2} \\
\leq \frac{(\beta_k^{DY})^2 \|d_{k-1}\|^2}{(g_k^T d_k)^2} + \frac{1}{\|g_k\|^2}.$$
(3.6)

From (3.2) we have that

$$\beta_k^{DY} \le \frac{d_k^T g_k}{d_{k-1}^T g_{k-1}},$$

which gives that

$$\frac{\|d_k\|^2}{(g_k^T d_k)^2} \leq \left(\frac{d_k^T g_k}{d_{k-1}^T g_{k-1}}\right)^2 \frac{\|d_{k-1}\|^2}{(g_k^T d_k)^2} + \frac{1}{\|g_k\|^2} \\
= \frac{\|d_{k-1}\|^2}{(g_{k-1}^T d_{k-1})^2} + \frac{1}{\|g_k\|^2}.$$
(3.7)

Now, by noting that

$$\frac{\|d_0\|^2}{\left(d_0^T g_0\right)^2} = \frac{1}{\|g_0\|^2},$$

and using (3.7) recursively, together with (3.5), we get that

$$\frac{\|d_k\|^2}{\left(g_k^T d_k\right)^2} \le \sum_{i=0}^k \frac{1}{\|g_i\|^2} \le \frac{k+1}{\gamma^2}.$$

Thus,

$$\frac{(g_k^T d_k)^2}{\|d_k\|^2} \ge \frac{\gamma^2}{k+1}$$

and therefore

$$\sum_{k=0}^{\infty} \frac{\left(g_k^T d_k\right)^2}{\|d_k\|^2} = \infty.$$

This is a contradiction to Lemma 3.2. Hence the proof is complete.

4. Numerical results

In this section we present some numerical results of our proposed new hybrid conjugate gradient method, herein denoted NLCHSDY, and we compare the results with those of the hybrid methods by Mo *et al.* [31] and Xu and Kong [45], herein denoted BMHSDY and LCHSDY, respectively. All the algorithms are coded in MATLAB R2019b. We test the methods using a total of 72 test problems selected from Andrei [3] and Moré *et al.* [32], with dimensions ranging from 2 to 20000. We use the generalized Wolfe conditions (1.11) for the step size α_k , and set the parameters as $\sigma = 0.01$, $\sigma_1 = 0.1$ and $\sigma_2 = 0.1$ for our proposed method. The other parameters a_1 and a_2 are set to be 0.1 and 0.6, respectively. We terminated all the algorithms when $||g_k|| \le \epsilon = 10^{-4}$, or the maximum number of iterations exceeds 5000. The parameters for the other two methods, that is, LCHSDY and BMHSDY, are set as in respective papers.

We present the numerical results in Table 1 and also compare the methods using the performance profiles tool introduced by Dolan and Moré [14], in Figs. 1-3. In Table 1, 'FN' denotes the name of the test problem, 'DIM' denotes dimension of the test problem, 'NI' is the number of iterations, 'FE' is the number of function evaluations and 'NGE' gives the number of gradient evaluations. The dash '-' indicates that the algorithm (method) failed to reach the optimal solution within the maximum number of iterations. It can be seen from Table 1 that the LCHSDY method struggled on a number of problems as it failed to solve them within the maximum number of iterations. On the other hand, the other two methods were very competitive, with the proposed method managing to solve all the problems and the BMHSDY failing on only one problem.

The comparison of the methods is further presented in Figs. 1-3 using Dolan and Moré performance profiles tool. Fig. 1 presents the performance profiles of number of

S. Narayanan and P. Kaelo

Figure 1: Iterations performance profiles.

Figure 2: Function evaluations performance profiles.

Figure 3: Number of gradient evaluations performance profiles.

FN	DIM	NLCHSDY			BMHSDY			LCHSDY		
		NI	FE	lNGE	NI	FE	NGE	NI	FE	NGE
Brown & Denis	4	41	332	110	30	275	93	105	1594	107
Ext. Freudenstein & Roth	5000	11	53	21	10	38	14	2488	10962	2650
Ext. Beale	20000	14	65	41	16	728	710	333	998	337
Perturbed Quadratic	2000	229	1147	231	346	1592	527	3280	16401	3281
Helical	3	34	167	65	37	172	80	940	3762	941
Ext. Rosenbrock	20000	41	208	93	30	377	312	-	-	-
Diagonal 1	50	37	121	72	39	131	80	70	211	71
Box 3 dimensional	3	9	37	30	16	58327	58318	4600	14452	9843
Freudenstein & Roth	2	10	48	20	8	32	12	2216	8869	2217
Biggs EXP6	6	98	296	244	94	286	244	-	-	-
Powell	4	43	162	87	12	45	22	-	-	-
Diagonal 2	2000	156	673	672	205	827	826	822	2327	2324
Diagonal 3	500	133	728	451	137	526	220	755	3031	757
Raydan 1	2000	227	693	236	266	831	316	2340	7041	2341
Raydan 2	20000	4	6	6	3	5	5	3	5	4
Ext. White & Holst	20000	46	246	107	30	672	600	-	-	-
Ext. Himmelblau	20000	8	32	15	9	35	17	19	60	22
Wood	4	122	630	176	157	779	365	-	-	-
Ext. Tridiagonal 1	20000	14	61	51	2	40	38	2113	4225	2114
Ext. BD1	20000	10	35	24	10	54	43	16	48	29
BDEXP	20000	5	49	49	5	49	49	16	152	152
Gen. Rosenbrock	200	1089	5467	1190	2662	12012	4237	-	-	-
APQ	5000	365	2191	727	493	2450	526	-	-	-
Diagonal 7	20000	4	10	6	4	10	6	4	9	5
Diagonal 8	20000	3	8	5	3	8	5	3	8	4
Beale	2	13	56	34	12	239	224	71	191	74
Rosenbrock	2	41	208	93	29	373	311	3393	13664	3484
QUARTC	20000	3	22	20	4	24	23	14	84	81
Ext. Penalty	20000	16	134	30	11	120	39	33	287	34
BIGGSB1	100	100	206	107	63	132	70	4050	8101	4051
Gaussian	3	1	3	2	1	3	2	1	3	2
Penalty I	20000	21	149	57	27	363	290	85	374	146
Penalty II	10	14	58	32	13	89	70	101	308	103
Ext. quad. pen. QP1	20000	4	25	16	7	29	12	12	1053	1009
Ext. Tridiagonal 2	20000	19	45	26	23	61	40	26	1055	1017
Ext. Wood	20000	174	890	238	123	791	465	-	-	-
Gen. Tridiagonal 1	20000	17	51	21	17	51	21	23	69	24
Gen. Tridiagonal 2	20000	40	139	53	42	149	65	70	216	71
Nondquar	20000	500	1354	1170	664	1850	1568	-	-	-
Hager	10000	63	254	75	79	1287	1134	165	1525	1178

Table 1: Table of numerical results.

FN	DIM	NLCHSDY			BMHSDY			LCHSDY		
		NI	FE	lNGE	NI	FE	NGE	NI	FE	NGE
Himmelbg	20000	4	47	47	4	47	47	18	209	209
Sinquad	20000	495	3560	1130	55	1480	1256	-	-	-
Liarwhd	20000	37	261	57	19	168	96	494	2682	495
Cosine	20000	7	24	18	7	24	17	7	24	11
Gen. White & Holst	100	1822	9929	2508	-	-	-	-	-	-
Diagonal 4	20000	6	14	8	6	14	7	66	176	67
Ext. Maratos	5000	65	398	188	51	534	409	1836	7355	1849
Bard	3	18	61	39	13	52	35	4191	9786	4192
Arwhead	2000	18	61	15	5	25	8	61	1289	1052
Ext. TET	5000	5	14	9	5	14	9	19	42	20
Ext. Denschnb	20000	4	13	8	6	23	17	12	25	13
Ext. Denschnf	20000	10	61	33	8	34	13	15	61	16
Ext. Powell singular	10000	67	255	144	16	61	32	-	-	-
Ext. PSC1	20000	10	26	14	10	25	14	13	31	14
Gen. PSC1	20000	26	183	169	10	69	63	15	145	71
BDQRTIC	500	86	433	123	77	323	91	-	-	-
Gen. Quartic	20000	7	24	17	7	17	10	9	22	10
Ext. quad. exp. EP1	10000	2	112	66	3	13	4	3	13	4
Engval1	20000	19	47	25	19	1051	1024	26	100	27
EG2	200	24	172	71	17	105	58	-	-	-
Dqdrtic	20000	12	50	19	5	19	7	408	1632	409
Brown almost-linear	200	7	71	35	50	1002	999	13	53	14
Broyden tridiagonal	20000	30	103	40	27	88	35	35	109	36
Gulf	3	60	258	181	34	258	202	-	-	-
Dixon3dq	100	100	206	107	177	370	235	4529	9059	4530
Ext. quad. pen. QP2	20000	44	251	112	37	292	192	983	4035	1076
Nondia	2000	13	88	19	7	44	14	201	1104	202
Nonscomp	20000	41	150	67	35	139	75	50	156	51
Perturbed Quad. Diagonal	20000	309	1784	497	254	1097	338	3148	16897	3149
Quadratic QF1	5000	365	1829	369	508	2409	796	-	-	-
Quadratic QF2	5000	645	3880	652	660	3330	723	-	-	-
Tridia	500	476	2785	880	387	1903	457	-	-	-

Table 1: Table of numerical results (cont'd).

iterations, Fig. 2 is function evaluations performance profiles and lastly, Fig. 3 gives the performance profiles of gradient evaluations. It is clear from these figures that our proposed NLCHSDY method outperforms the other two methods. Thus, the NLCHSDY method, compared to the other two methods, is very effective.

5. Conclusion

In this paper we proposed a new hybrid conjugate gradient method as a linear combination of the Dai-Yuan (DY) method and either Hestenes-Stiefel (HS) method or its

modifications. The method was shown to satisfy the sufficient descent condition and its global convergence was established under the generalized Wolfe conditions. The method was tested on a number of benchmark problems from the literature and compared with other methods. Numerical results show that our new proposed hybrid conjugate gradient method is more effective compared to those other conjugate gradient methods.

References

- A. ALHAWARAT, Z. SALLEH, M. MAMAT AND M. RIVAIE, An efficient modified Polak-Ribière-Polak conjugate gradient method with global convergence properties, Optim. Methods Softw., 32(6) (2017), 1299–1312.
- [2] N. ANDREI, A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan, Stud. Inform. Control, 17(1) (2008), 55–70.
- [3] N. ANDREI, An unconstrained optimization test functions collection, Adv. Model. Optim., 10(1) (2008), 147–161.
- [4] N. ANDREI, *Hybrid conjugate gradient algorithm for unconstrained optimization*, J. Optim. Theory Appl., 141(2) (2009), 249–264.
- [5] S. BABAIE-KAFAKI AND R. GHANBARI, A hybridization of Polak-Ribière-Polak and Fletcher-Reeves conjugate gradient methods, Numer. Algor., 68(3) (2015), 481–495.
- [6] S. BABAIE-KAFAKI AND N. MAHDAVI-AMIRI, *Two modified hybrid conjugate gradient methods* based on a hybrid secant equation, Math. Model. Anal., 18(1) (2013), 32–52.
- [7] C. CARTIS, N. I. M. GOULD AND PH. L. TOINT, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems, SIAM J. Optim., 20(6) (2010), 2833–2852.
- [8] S. K. CHAKRABORTY AND G. PANDA, Two phase quasi-Newton method for unconstrained optimization problem, Afr. Mat., 30 (2019), 737–746.
- [9] W. CHENG, A two-term PRP-based descent method, Numer. Funct. Anal. Optim., 28 (2007), 1217–1230.
- [10] Y. H. DAI AND Y. YUAN, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177–182.
- [11] R. DEHGHANI, N. BIDABADI, H. FAHS AND M. M. HOSSEINI, A conjugate gradient method based on a modified secant relation for unconstrained optimization, Numer. Funct. Anal. Optim., 41(5) (2020), 621–634.
- [12] R. DEHGHANI, M. M. HOSSEINI AND N. BIDABADI, *The modified quasi-Newton methods for solving unconstrained optimization problems*, Int. J. Numer. Model. El., 32 (2019), e2459.
- [13] S. S. DJORDJEVIĆ, New hybrid conjugate gardient method as a convex combination of Ls and Fr methods, Acta Math. Sci., 39 (2019), 214–228.
- [14] E. D. DOLAN AND J. J. MORÉ, Benchmarking optimization software with performance profiles, Math. Program., 91 (2001), 201–213.
- [15] X. L. DONG, H. W. LIU, Y. B. HE, S. BABAIE-KAFAKI AND R. GHANBARI, A new threeterm conjugate gradient method with descent direction for unconstrained optimization, Math. Model. Anal., 21 (2016), 399–411.
- [16] R. FLETCHER, Practical Methods of Optimization. Second Edition, John Wiley and Sons, 1987.
- [17] R. FLETCHER AND C. REEVES, *Function minimization by conjugate gradients*, Computer J., 7 (1964), 149–154.

- [18] A. GALÁNTAI, The theory of Newton's method, J. Comput. Appl. Math., 24 (2000), 25-44.
- [19] W. W. HAGER AND H. ZHANG, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170–192.
- [20] M. HAMODA, M. MAMAT, M. RIVAIE AND Z. SALLEH, A conjugate gradient method with strong Wolfe-Powell line search for unconstrained optimization, Appl. Math. Sci. (Hikari), 10 (2016), 721–734.
- [21] M. R. HESTENES AND E. STIEFEL, *Methods of conjugate gradients for solving linear systems*, J. Res. Natl. Bur. Stand., 49(6) (1952), 409–436.
- [22] R. JOHARI, M. RIVAIE AND M. MAMAT, A new scaled steepest descent method for unconstrained optimization with global convergence properties, J. Eng. Appl. Sci., 13(6) (2018), 5442–5445.
- [23] P. KAELO, A hybrid nonlinear conjugate gradient method for unconstrained optimization problems, Pacific J. Optim., 12(4) (2016), 847–859.
- [24] P. KAELO, P. MTAGULWA AND M. V. THUTO, A globally convergent hybrid conjugate gradient method with strong Wolfe conditions for unconstrained optimization, Math. Sci. (Springer), 14 (2020), 1–9.
- [25] X. LI AND X. ZHAO, A hybrid conjugate gradient method for optimization problems, Natural Science, 3(1) (2011), 85–90.
- [26] C. S. LIU, J. R. CHANG AND Y. W. CHEN, A modified algorithm of steepest descent method for solving unconstrained nonlinear optimization problems, J. Mar. Sci. Tech. Japan, 23(1) (2015), 88–97.
- [27] J. LIU, A hybrid nonlinear conjugate gradient method, Lobachevskii J. Math., 33(3) (2012), 195–199.
- [28] J. LIU AND S. DU, *Modified three-term conjugate gradient method and its applications*, Math. Probl. Eng., 2019 (2019), Article ID 5976595.
- [29] Y. LIU AND C. STOREY, *Efficient generalized conjugate gradient algorithms*, J. Optim. Theory Appl., 69(1) (1991), 129–137.
- [30] I. E. LIVIERIS, V. TAMPAKAS AND P. PINTELAS, A descent hybrid conjugate gradient method based on the memoryless BFGS update, Numer. Algor., 79 (2018), 1169–1185.
- [31] J. MO, N. GU AND Z. WEI, Hybrid conjugate gradient methods for unconstrained optimization, Optim. Methods Softw., 22(2) (2007), 297–307.
- [32] J. J. MORÉ, B. S. GARBOW AND K. E. HILLSTROM, Testing unconstrained optimization software, ACM Trans. Math. Software, 7(1) (1981), 136–140.
- [33] V. MOROVATI, H. BASIRZADEH AND L. POURKARIMI, Quasi-Newton methods for multiobjective optimization problems, 4OR, 16 (2018), 261–294.
- [34] P. MTAGULWA AND P. KAELO, An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems, Appl. Numer. Math., 145 (2019), 111–120.
- [35] S. NARAYANAN, P. KAELO AND M. V. THUTO, A modified quadratic hybridization of Polak-Ribière-Polak and Fletcher-Reeves conjugate gradient method for unconstrained optimization problems, Int. J. Optim. Control. Theor. Appl., 7(2) (2017), 177–185.
- [36] E. POLAK AND G. RIBIÈRE, Note sur la convergence de methodes de directions conjuguees, Rev. Fr. Inf. Rech. Oper. 3e Année, 16 (1969), 35–43.
- [37] Z. POLAREJ, Quasi-Newton's method for multiobjective optimization, J. Comput. Appl. Math., 255(1) (2014), 765–777.
- [38] B. T. POLYAK, *The conjugate gradient method in extreme problems*, USSR Comput. Math. Math. Phys., 9 (1969), 94–112.
- [39] B. T. POLYAK, Newton's method and its use in optimization, Eur. J. Oper. Res., 181(3) (2007), 1086–1096.

- [40] M. RIVAIE, M. MAMAT, L. W. JUNE AND I. MOHD, A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218 (2012), 11323–11332.
- [41] Z. SALLEH AND A. ALHAWARAT, An efficient modification of the Hestenes-Stiefel nonlinear conjugate gradient method with restart property, J. Inequal. Appl., 2016 (2016): 110.
- [42] A. WAKILI, Quasi-Newton method for solving non-linear optimization problems of convergence functional, IOSR J. Math., 15(4) (2019), 42–47.
- [43] Z. WEI, G. LI AND L. QI, New quasi-Newton methods for unconstrained optimization problems, Appl. Math. Comput., 175(2) (2006), 1156–1188.
- [44] Z. WEI, S. YAO AND L. LIU, The convergence properties of some new conjugate gradient methods, Appl. Math. Comput., 183 (2006), 1341–1350.
- [45] X. XU AND F. KONG, New hybrid conjugate gradient methods with the generalized Wolfe line search, Springer Plus, 5(1) (2016): 881.
- [46] S. YAO, Z. WEI AND H. HUANG, A note about WYL's conjugate gradient method and its application, Appl. Math. Comput., 191(2) (2007), 381–388.
- [47] G. YUAN AND W. HU, A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations, J. Inequal. Appl., 2018 (2018): 113.
- [48] G. YUAN, X. DUAN, W. LIU, X. WANG, Z. CUI AND Z. SHENG, Two new PRP conjugate gradient algorithms for minimization optimization models, Plos One, 10(10) (2015), e0140071.
- [49] Y.-X. YUAN, A new stepsize for the steepest descent method, J. Comput. Math., 24(2) (2006), 149–156.