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Abstract. Conjugate gradient methods are interesting iterative methods that solve

large scale unconstrained optimization problems. A lot of recent research has thus
focussed on developing a number of conjugate gradient methods that are more effec-

tive. In this paper, we propose another hybrid conjugate gradient method as a linear
combination of Dai-Yuan (DY) method and the Hestenes-Stiefel (HS) method. The

sufficient descent condition and the global convergence of this method are estab-

lished using the generalized Wolfe line search conditions. Compared to the other
conjugate gradient methods, the proposed method gives good numerical results and

is effective.
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1. Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn −→ R is a continuously differentiable function that is bounded below.

There are several numerical methods for solving the unconstrained optimization prob-

lem (1.1). These include conjugate gradient methods [1, 6, 9, 11, 19], Newton meth-

ods [18, 39], quasi-Newton methods [8, 12, 33, 37, 42, 43] and steepest descent meth-

ods [7,22,26,49]. These methods are iterative, that is, given an initial guess x0 ∈ R
n,

they generate a sequence {xk} using
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xk+1 = xk + αkdk, (1.2)

where αk > 0 is a step length and dk is a descent direction. They also differ according

to how the search direction dk is obtained or updated. Newton and quasi-Newton

methods require the second derivative information for updating the direction dk and

hence have good convergence rate. Conjugate gradient and steepest descent methods

only require the first derivative information, which makes them more applicable to

solving large-scale optimization problems.

The step length αk > 0 is chosen to satisfy certain line search conditions. Two of

the usually used line searches are the strong Wolfe conditions
{

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk,

∣

∣g(xk + αkdk)
T dk

∣

∣ ≤ σ1
∣

∣gTk dk
∣

∣ ,
(1.3)

and the weak Wolfe conditions
{

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk,

g(xk + αkdk)
Tdk ≥ σ1g

T
k dk,

(1.4)

where 0 < σ < σ1 < 1.
In this paper, we consider solving problem (1.1) using a conjugate gradient method.

Conjugate gradient methods generate the next iterate xk+1 by updating the direction

dk as

dk =

{

−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
(1.5)

where gk = ∇f(xk) is the gradient of the function f at xk, and βk ∈ R is a parameter

known as the conjugate gradient coefficient. Different choices of βk lead to different

conjugate gradient methods, with the most well known methods being the Fletcher-

Reeves (FR) [17], Polak-Ribière-Polyak (PRP) [36, 38], conjugate descent (CD) [16],

Dai-Yuan (DY) [10], Liu-Storey (LS) [29] and Hestenes-Stiefel (HS) [21]. The PRP, LS

and HS conjugate gradient methods have been shown to be numerically efficient while

the others are theoretically effective. Other conjugate gradient methods have also been

suggested in the literature [5,13,24,28,30,34,35,47] and a number of them are either

modifications or hybridizations of the above methods. For instance, Wei et al. [44]

proposed a conjugate gradient method

βWYL
k =

gTk
(

gk −
‖gk‖

‖gk−1‖
gk−1

)

‖gk−1‖2
, (1.6)

which is a modification of the PRP method. It is globally convergent under weak Wolfe

line search and numerically better than the PRP method. Similarly, Yao et al. [46]

extended the above modification to HS method, that is,

βV HS
k =

gTk
(

gk −
‖gk‖

‖gk−1‖
gk−1

)

dTk−1
yk−1

, (1.7)
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where yk−1 = gk − gk−1, and showed it generates sufficient descent directions.

Another method was proposed by Li and Zhao [25] where

βP−W
k = max

{

βPRP
k , βWYL

k

}

, (1.8)

which is a hybridization of the PRP and WYL methods. This method is also globally con-

vergent under weak Wolfe conditions and is numerically effective. Liu [27] modified

βCD as

βk = βCD +min
{

0, ϕk.β
CD
}

, (1.9)

where

ϕk = −
gTk dk−1

dk−1(gk − gk−1)
. (1.10)

The global convergence and numerical experiments of this method are done under

generalized Wolfe conditions

{

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk,

σ1g
T
k dk ≤ g(xk + αkdk)

Tdk ≤ −σ2g
T
k dk,

(1.11)

where 0 < σ < σ1 < 1 and σ2 ≥ 0.

In 2008 and 2009, Andrei proposed two hybrids in [2] and [4], respectively,

βC
k = (1− θk)β

HS
k + θkβ

DY
k , (1.12)

which is a convex combination of HS and DY, and

βN
k = (1− θk)β

PRP
k + θkβ

FR
k , (1.13)

which combines PRP and FR methods. These methods are globally convergent under

strong Wolfe conditions and standard Wolfe conditions, respectively. Other hybrids

include those of [1,6,9,15,20,23,35,40,41,48].

In this paper we present another hybrid conjugate gradient method that combines

the good features of DY, VHS and β∗∗
k by Mo et al. [31]. This method is presented in

the next section. The rest of the paper is organised as follows. The sufficient decent

condition and the global convergence of the proposed method is presented in Section 3.

We then compare the numerical results of the new method with some other existing

methods in Section 4. Finally, conclusion is presented in Section 5.

2. Proposed hybrid method

In this section we develop a new hybrid conjugate gradient method guided by the

works of Mo et al. [31], and Xu and Kong [45]. In 2007, Mo et al. [31] proposed

a hybrid method with

βk = max
{

0,min
{

βHS
k , βDY

k , β∗∗
k

}}

, (2.1)
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where

β∗∗
k = βHS

k +
2gTk gk−1

dTk−1
yk−1

. (2.2)

With the generalized Wolfe conditions (1.11), this method was shown to be globally

convergent. Xu and Kong [45] proposed a linear combination of HS and DY methods

as

βk =

{

a1β
DY
k + a2β

HS
k , if ‖gk‖

2 >
∣

∣gTk gk−1

∣

∣ ,

0, otherwise,
(2.3)

where a1, a2 are positive numbers which satisfy 0 < a1 + 2a2 < 1

1+σ2
< 1. To establish

the method’s global convergence, the authors suggested using the generalized Wolfe

line search (1.11), when

dTk−1gk ≥ 0 and − σ2d
T
k−1gk−1 < −σ2d

T
k−1(gk−1 − gk),

and the modified Wolfe line search

σ1d
T
k−1gk−1 ≤ dTk−1gk ≤ −σ2d

T
k−1(gk−1 − gk), (2.4)

when

dTk−1gk < 0, and − σ2d
T
k−1(gk−1 − gk) < −σ2d

T
k−1gk−1.

Motivated by the above two methods, here we propose a new hybrid as a linear com-

bination of VHS, β∗∗
k and DY methods as

βS1

k =

{

a1β
DY
k + a2βk, if ‖gk

∥

∥

2 < |gTk gk−1

∣

∣ ,

βV HS
k , otherwise,

(2.5)

where

βk = max
{

0,min
{

βV HS
k , β∗∗

k

}}

and a1 and a2 are positive constants such that 0 < a1 + a2 <
1

1+σ2
< 1 and σ2 ≥ 0 is as

defined in (1.11). The sufficient descent condition and the global convergence of the

method are established using the generalized Wolfe conditions (1.11). We describe the

developed algorithm below.

Algorithm 2.1 A new linear combination of HS and DY Conjugate Gradient (NLCHSDY)

method.
1: Give the initial point x0 ∈ R

n, tolerance ǫ > 0 and set k = 0.

2: Set g0 = ∇f(x0). If ‖g0‖ ≤ ǫ stop.

3: for k = 0, 1, . . . do

4: Compute dk using (1.5).

5: Find αk using (1.11).

6: Set xk+1 = xk + αkdk, and set k = k + 1.

7: If ‖gk‖ ≤ ǫ stop.

8: Compute βk using (2.5).

9: end for
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3. Convergence analysis

In this section we provide the sufficient descent condition of our new hybrid conju-

gate gradient method and establish its global convergence under the generalized Wolfe

conditions (1.11).

Lemma 3.1. Let {gk} and {dk} be generated by Algorithm 2.1. Then

dTk gk < 0, ∀k ≥ 0. (3.1)

Proof. When k = 0, we have dk = −gk which implies dT0 g0 = −‖g0‖
2 < 0 satisfies

(3.1). Now, we show it also holds for k ≥ 1. Suppose the result holds for n = k − 1,

that is, dTk−1
gk−1 < 0. From βk = max{0,min{βV HS

k , β∗∗
k }} we have βk ≥ 0. Also

min
{

βV HS
k , β∗∗

k

}

≤
‖gk‖

2

dTk−1
yk−1

= βDY
k .

Notice that from the line search (1.11) we have that

dTk−1yk−1 ≥ (σ1 − 1)dTk−1gk−1 > 0,

and since 0 < a1 + a2 <
1

1+σ2
< 1, we get that 0 ≤ βS1

k ≤ βDY
k .

Now, for n = k, pre-multiplying both sides of dk = −gk + βS1

k dk−1 by gTk it follows

that

gTk dk = −‖gk‖
2 + βS1

k gTk dk−1 ≤ −‖gk‖
2 + βDY

k gTk dk−1

= ‖gk‖
2 +

(

‖gk‖
2

dTk−1
yk−1

)

gTk dk−1 =

(

−1 +
gTk dk−1

dTk−1
yk−1

)

‖gk‖
2

=

(

gTk−1
dk−1

dTk−1
yk−1

)

‖gk‖
2 = βDY

k gTk−1dk−1 < 0. (3.2)

Thus, gTk dk < 0 holds for all k ≥ 0. This completes the proof.

Now to prove the convergence of our new hybrid method we need the following

assumptions.

Assumption 3.1. Let the level set

Ω =
{

x ∈ R
n | f(x) ≤ f(x0)

}

,

where x0 is the initial guess, be bounded. That is, there exists a positive constant B

such that

‖x‖ ≤ B, ∀x ∈ Ω. (3.3)
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Assumption 3.2. In some neighbourhood N of Ω the function f is continuously differ-

entiable and its gradient g(x) is Lipschitz continuous, i.e. there exists a constant L > 0
such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N.

Lemma 3.2. Consider any iteration of the form xk+1 = xk+αkdk, where dk is a descent di-

rection and αk satisfies the generalized Wolfe conditions (1.11). Suppose Assumptions 3.1
and 3.2 hold, then either

lim
k−→∞

inf ‖gk‖ = 0

or
∞
∑

k=0

(

gTk dk
)2

‖dk‖2
< ∞.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold, and let {gk} and {dk} be generated

by Algorithm 2.1. Then

lim
k−→∞

inf ‖gk‖ = 0. (3.4)

Proof. We will prove this theorem by contradiction. Assume that (3.4) does not

hold. Then there exists a constant γ > 0 such that

‖gk‖ ≥ γ, ∀k ≥ 0. (3.5)

Now, by squaring both sides of dk + gk = βS1

k dk−1 and dividing throughout by

(gTk dk)
2, we get

‖dk‖
2

(

gTk dk
)2

=

(

βS1

k

)2
‖dk−1‖

2

(

gTk dk
)2

−
2

gTk dk
−

‖gk‖
2

(

gTk dk
)2

=

(

βS1

k

)2
‖dk−1‖

2

(

gTk dk
)2

−

(

1

‖gk‖
+

‖gk‖

gTk dk

)2

+
1

‖gk‖2

≤

(

βDY
k

)2
‖dk−1‖

2

(

gTk dk
)2

+
1

‖gk‖2
. (3.6)

From (3.2) we have that

βDY
k ≤

dTk gk

dTk−1
gk−1

,

which gives that

‖dk‖
2

(

gTk dk
)2

≤

(

dTk gk

dTk−1
gk−1

)2

‖dk−1‖
2

(

gTk dk
)2

+
1

‖gk‖2

=
‖dk−1‖

2

(

gTk−1
dk−1

)2
+

1

‖gk‖2
. (3.7)



A Linear Hybridization Method for Unconstrained Optimization 7

Now, by noting that
‖d0‖

2

(

dT
0
g0
)2

=
1

‖g0‖2
,

and using (3.7) recursively, together with (3.5), we get that

‖dk‖
2

(

gTk dk
)2

≤
k
∑

i=0

1

‖gi‖2
≤

k + 1

γ2
.

Thus,
(

gTk dk
)2

‖dk‖2
≥

γ2

k + 1
,

and therefore
∞
∑

k=0

(

gTk dk
)2

‖dk‖2
= ∞.

This is a contradiction to Lemma 3.2. Hence the proof is complete.

4. Numerical results

In this section we present some numerical results of our proposed new hybrid con-

jugate gradient method, herein denoted NLCHSDY, and we compare the results with

those of the hybrid methods by Mo et al. [31] and Xu and Kong [45], herein denoted

BMHSDY and LCHSDY, respectively. All the algorithms are coded in MATLAB R2019b.

We test the methods using a total of 72 test problems selected from Andrei [3] and

Moré et al. [32], with dimensions ranging from 2 to 20000. We use the generalized

Wolfe conditions (1.11) for the step size αk, and set the parameters as σ = 0.01,

σ1 = 0.1 and σ2 = 0.1 for our proposed method. The other parameters a1 and a2 are set

to be 0.1 and 0.6, respectively. We terminated all the algorithms when ‖gk‖ ≤ ǫ = 10−4,

or the maximum number of iterations exceeds 5000. The parameters for the other two

methods, that is, LCHSDY and BMHSDY, are set as in respective papers.

We present the numerical results in Table 1 and also compare the methods using

the performance profiles tool introduced by Dolan and Moré [14], in Figs. 1-3. In Ta-

ble 1, ‘FN’ denotes the name of the test problem, ‘DIM’ denotes dimension of the test

problem, ‘NI’ is the number of iterations, ‘FE’ is the number of function evaluations and

‘NGE’ gives the number of gradient evaluations. The dash ‘-’ indicates that the algo-

rithm (method) failed to reach the optimal solution within the maximum number of

iterations. It can be seen from Table 1 that the LCHSDY method struggled on a number

of problems as it failed to solve them within the maximum number of iterations. On the

other hand, the other two methods were very competitive, with the proposed method

managing to solve all the problems and the BMHSDY failing on only one problem.

The comparison of the methods is further presented in Figs. 1-3 using Dolan and

Moré performance profiles tool. Fig. 1 presents the performance profiles of number of
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Figure 1: Iterations performance profiles.

Figure 2: Function evaluations performance profiles.

Figure 3: Number of gradient evaluations performance profiles.
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Table 1: Table of numerical results.

FN DIM
NLCHSDY BMHSDY LCHSDY

NI FE lNGE NI FE NGE NI FE NGE

Brown & Denis 4 41 332 110 30 275 93 105 1594 107

Ext. Freudenstein & Roth 5000 11 53 21 10 38 14 2488 10962 2650

Ext. Beale 20000 14 65 41 16 728 710 333 998 337

Perturbed Quadratic 2000 229 1147 231 346 1592 527 3280 16401 3281

Helical 3 34 167 65 37 172 80 940 3762 941

Ext. Rosenbrock 20000 41 208 93 30 377 312 - - -

Diagonal 1 50 37 121 72 39 131 80 70 211 71

Box 3 dimensional 3 9 37 30 16 58327 58318 4600 14452 9843

Freudenstein & Roth 2 10 48 20 8 32 12 2216 8869 2217

Biggs EXP6 6 98 296 244 94 286 244 - - -

Powell 4 43 162 87 12 45 22 - - -

Diagonal 2 2000 156 673 672 205 827 826 822 2327 2324

Diagonal 3 500 133 728 451 137 526 220 755 3031 757

Raydan 1 2000 227 693 236 266 831 316 2340 7041 2341

Raydan 2 20000 4 6 6 3 5 5 3 5 4

Ext. White & Holst 20000 46 246 107 30 672 600 - - -

Ext. Himmelblau 20000 8 32 15 9 35 17 19 60 22

Wood 4 122 630 176 157 779 365 - - -

Ext. Tridiagonal 1 20000 14 61 51 2 40 38 2113 4225 2114

Ext. BD1 20000 10 35 24 10 54 43 16 48 29

BDEXP 20000 5 49 49 5 49 49 16 152 152

Gen. Rosenbrock 200 1089 5467 1190 2662 12012 4237 - - -

APQ 5000 365 2191 727 493 2450 526 - - -

Diagonal 7 20000 4 10 6 4 10 6 4 9 5

Diagonal 8 20000 3 8 5 3 8 5 3 8 4

Beale 2 13 56 34 12 239 224 71 191 74

Rosenbrock 2 41 208 93 29 373 311 3393 13664 3484

QUARTC 20000 3 22 20 4 24 23 14 84 81

Ext. Penalty 20000 16 134 30 11 120 39 33 287 34

BIGGSB1 100 100 206 107 63 132 70 4050 8101 4051

Gaussian 3 1 3 2 1 3 2 1 3 2

Penalty I 20000 21 149 57 27 363 290 85 374 146

Penalty II 10 14 58 32 13 89 70 101 308 103

Ext. quad. pen. QP1 20000 4 25 16 7 29 12 12 1053 1009

Ext. Tridiagonal 2 20000 19 45 26 23 61 40 26 1055 1017

Ext. Wood 20000 174 890 238 123 791 465 - - -

Gen. Tridiagonal 1 20000 17 51 21 17 51 21 23 69 24

Gen. Tridiagonal 2 20000 40 139 53 42 149 65 70 216 71

Nondquar 20000 500 1354 1170 664 1850 1568 - - -

Hager 10000 63 254 75 79 1287 1134 165 1525 1178
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Table 1: Table of numerical results (cont’d).

FN DIM
NLCHSDY BMHSDY LCHSDY

NI FE lNGE NI FE NGE NI FE NGE

Himmelbg 20000 4 47 47 4 47 47 18 209 209

Sinquad 20000 495 3560 1130 55 1480 1256 - - -

Liarwhd 20000 37 261 57 19 168 96 494 2682 495

Cosine 20000 7 24 18 7 24 17 7 24 11

Gen. White & Holst 100 1822 9929 2508 - - - - - -

Diagonal 4 20000 6 14 8 6 14 7 66 176 67

Ext. Maratos 5000 65 398 188 51 534 409 1836 7355 1849

Bard 3 18 61 39 13 52 35 4191 9786 4192

Arwhead 2000 18 61 15 5 25 8 61 1289 1052

Ext. TET 5000 5 14 9 5 14 9 19 42 20

Ext. Denschnb 20000 4 13 8 6 23 17 12 25 13

Ext. Denschnf 20000 10 61 33 8 34 13 15 61 16

Ext. Powell singular 10000 67 255 144 16 61 32 - - -

Ext. PSC1 20000 10 26 14 10 25 14 13 31 14

Gen. PSC1 20000 26 183 169 10 69 63 15 145 71

BDQRTIC 500 86 433 123 77 323 91 - - -

Gen. Quartic 20000 7 24 17 7 17 10 9 22 10

Ext. quad. exp. EP1 10000 2 112 66 3 13 4 3 13 4

Engval1 20000 19 47 25 19 1051 1024 26 100 27

EG2 200 24 172 71 17 105 58 - - -

Dqdrtic 20000 12 50 19 5 19 7 408 1632 409

Brown almost-linear 200 7 71 35 50 1002 999 13 53 14

Broyden tridiagonal 20000 30 103 40 27 88 35 35 109 36

Gulf 3 60 258 181 34 258 202 - - -

Dixon3dq 100 100 206 107 177 370 235 4529 9059 4530

Ext. quad. pen. QP2 20000 44 251 112 37 292 192 983 4035 1076

Nondia 2000 13 88 19 7 44 14 201 1104 202

Nonscomp 20000 41 150 67 35 139 75 50 156 51

Perturbed Quad. Diagonal 20000 309 1784 497 254 1097 338 3148 16897 3149

Quadratic QF1 5000 365 1829 369 508 2409 796 - - -

Quadratic QF2 5000 645 3880 652 660 3330 723 - - -

Tridia 500 476 2785 880 387 1903 457 - - -

iterations, Fig. 2 is function evaluations performance profiles and lastly, Fig. 3 gives

the performance profiles of gradient evaluations. It is clear from these figures that our

proposed NLCHSDY method outperforms the other two methods. Thus, the NLCHSDY

method, compared to the other two methods, is very effective.

5. Conclusion

In this paper we proposed a new hybrid conjugate gradient method as a linear com-

bination of the Dai-Yuan (DY) method and either Hestenes-Stiefel (HS) method or its
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modifications. The method was shown to satisfy the sufficient descent condition and

its global convergence was established under the generalized Wolfe conditions. The

method was tested on a number of benchmark problems from the literature and com-

pared with other methods. Numerical results show that our new proposed hybrid con-

jugate gradient method is more effective compared to those other conjugate gradient

methods.
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