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Abstract. Conjugate gradient methods are interesting iterative methods that solve
large scale unconstrained optimization problems. A lot of recent research has thus
focussed on developing a number of conjugate gradient methods that are more effec-
tive. In this paper, we propose another hybrid conjugate gradient method as a linear
combination of Dai-Yuan (DY) method and the Hestenes-Stiefel (HS) method. The
sufficient descent condition and the global convergence of this method are estab-
lished using the generalized Wolfe line search conditions. Compared to the other
conjugate gradient methods, the proposed method gives good numerical results and
is effective.
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1. Introduction

Consider the unconstrained optimization problem

min f(z), (1.1)

where f: R” — R is a continuously differentiable function that is bounded below.
There are several numerical methods for solving the unconstrained optimization prob-
lem (1.1). These include conjugate gradient methods [1,6,9,11,19], Newton meth-
ods [18,39], quasi-Newton methods [8,12,33,37,42,43] and steepest descent meth-

ods [7,22,26,49]. These methods are iterative, that is, given an initial guess z( € R",
they generate a sequence {xj} using
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Tpy1 = Tk + agdy, (1.2)

where o, > 0 is a step length and dj, is a descent direction. They also differ according
to how the search direction dj, is obtained or updated. Newton and quasi-Newton
methods require the second derivative information for updating the direction d; and
hence have good convergence rate. Conjugate gradient and steepest descent methods
only require the first derivative information, which makes them more applicable to
solving large-scale optimization problems.

The step length «; > 0 is chosen to satisfy certain line search conditions. Two of
the usually used line searches are the strong Wolfe conditions

{f(xk + axdy) < f(zk) + oargd dg, (1.3)
l9(@r + ardy) ' di| < o1 gl di|,
and the weak Wolfe conditions
{f (wx + axdy) < f(xx) + ong] di, (1.4)
g(zy + axdy)Tdy, > o9l dy,

where0 <o <oy < 1.
In this paper, we consider solving problem (1.1) using a conjugate gradient method.
Conjugate gradient methods generate the next iterate =, by updating the direction

d as
— k=0
dk; _ 9k ) (15)
—gk + Brdp—1, k>1,

where g, = V f(zy) is the gradient of the function f at x;, and 5 € R is a parameter
known as the conjugate gradient coefficient. Different choices of g lead to different
conjugate gradient methods, with the most well known methods being the Fletcher-
Reeves (FR) [17], Polak-Ribiere-Polyak (PRP) [36,38], conjugate descent (CD) [16],
Dai-Yuan (DY) [10], Liu-Storey (LS) [29] and Hestenes-Stiefel (HS) [21]. The PRP, LS
and HS conjugate gradient methods have been shown to be numerically efficient while
the others are theoretically effective. Other conjugate gradient methods have also been
suggested in the literature [5,13,24,28,30,34,35,47] and a number of them are either
modifications or hybridizations of the above methods. For instance, Wei et al. [44]
proposed a conjugate gradient method

T(, — okl
wyr _ Ik (9% — gesi9-1)

B
‘ lgk—1I?

which is a modification of the PRP method. It is globally convergent under weak Wolfe
line search and numerically better than the PRP method. Similarly, Yao et al. [46]
extended the above modification to HS method, that is,

; (1.6)

T llgel
9k (95 — [gem,9-1)

dzflykfl

BYHS — , (1.7)
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where y;_1 = gr — gx_1, and showed it generates sufficient descent directions.
Another method was proposed by Li and Zhao [25] where

v = max {0, B} (1.8)

which is a hybridization of the PRP and WYL methods. This method is also globally con-
vergent under weak Wolfe conditions and is numerically effective. Liu [27] modified
5C’D as
B = P + min {0, 1, L7}, (1.9)

where
_ g{qu

di—1(g9k — gr—1)
The global convergence and numerical experiments of this method are done under
generalized Wolfe conditions

Pr = (1.10)

{f(:vk +agdy) < f(r) + oargl dy, (1.11)

o9t di, < g(xr + apdi) T di < —o2gldy,

where 0 < 0 < 07 < 1 and o9 > 0.
In 2008 and 2009, Andrei proposed two hybrids in [2] and [4], respectively,

BE = (1= 0p)B{" + 0x 3, (1.12)
which is a convex combination of HS and DY, and
B = (1= 0x)BE " + 0,857, (1.13)

which combines PRP and FR methods. These methods are globally convergent under
strong Wolfe conditions and standard Wolfe conditions, respectively. Other hybrids
include those of [1,6,9,15,20,23,35,40,41,48].

In this paper we present another hybrid conjugate gradient method that combines
the good features of DY, VHS and j3;;* by Mo et al. [31]. This method is presented in
the next section. The rest of the paper is organised as follows. The sufficient decent
condition and the global convergence of the proposed method is presented in Section 3.
We then compare the numerical results of the new method with some other existing
methods in Section 4. Finally, conclusion is presented in Section 5.

2. Proposed hybrid method

In this section we develop a new hybrid conjugate gradient method guided by the
works of Mo et al. [31], and Xu and Kong [45]. In 2007, Mo et al. [31] proposed
a hybrid method with

Bx = max {0,min { 8%, BCY, Bi* } }, (2.1)
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where

295 g1
d£_1yk—1
With the generalized Wolfe conditions (1.11), this method was shown to be globally

convergent. Xu and Kong [45] proposed a linear combination of HS and DY methods
as

HS

DY HS  ; 2 |,
a +a , if > ~1]>
B, = { 15y, 25, lgxl® > |gi 91| (2.3)

0, otherwise,

where a1, ay are positive numbers which satisfy 0 < a; + 2as < ﬁ < 1. To establish
the method’s global convergence, the authors suggested using the generalized Wolfe
line search (1.11), when

di_19x >0 and — o9di_1gk—1 < —02di_1(gk—1 — gr),
and the modified Wolfe line search
ordt gk < db_ygr < —oadf 1 (gk-1 — i), (2.4)

when
d{flgk < O, and — O'ngfl(gkfl — gk) < _O'ngflgkfl-

Motivated by the above two methods, here we propose a new hybrid as a linear com-
bination of VHS, 5;* and DY methods as

S _ {alﬂfy + 2B, if gk ||* < 98 gk—1

)
, (2.5)
K VHS otherwise,

where

B = max {O, min {ﬁXHS Z*}}
and a; and ay are positive constants such that 0 < a; + as < ﬁ < 1land oy > 0is as
defined in (1.11). The sufficient descent condition and the global convergence of the
method are established using the generalized Wolfe conditions (1.11). We describe the
developed algorithm below.

Algorithm 2.1 A new linear combination of HS and DY Conjugate Gradient (NLCHSDY)
method.
1: Give the initial point 2y € R", tolerance ¢ > 0 and set k& = 0.
2: Set go = Vf(x0). If ||go|| < € stop.
3: fork=0,1,...do
4:  Compute d; using (1.5).
5 Find «4, using (1.11).
6 Set xx11 =z + apdy, and set k = k + 1.
7: If |gx|| < € stop.
8
9

Compute [ using (2.5).
: end for
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3. Convergence analysis

In this section we provide the sufficient descent condition of our new hybrid conju-
gate gradient method and establish its global convergence under the generalized Wolfe
conditions (1.11).

Lemma 3.1. Let {gx} and {d}} be generated by Algorithm 2.1. Then
dlge <0, Vk>0. (3.1)

Proof. When k = 0, we have dj, = —g;, which implies d g0 = —||go||* < 0 satisfies
(3.1). Now, we show it also holds for £ > 1. Suppose the result holds for n = k — 1,
that is, I ,gx—1 < 0. From B = max{0, min{8Y /%, Bi*}} we have B; > 0. Also

Ik
mm{ﬁ\/HS }_ H 2 BI?Y
dk 1Yk—1

Notice that from the line search (1.11) we have that
di_1yr—1 > (o1 — 1)d}_1gx—1 > 0,

and since 0 < a1 + as < ﬁ < 1, we get that 0 < ﬁ,fl < Bbv.

Now, for n = k, pre-multiplying both sides of d, = —g; + ﬁlfldk_l by ¢! it follows
that

gFd = =gkl + By gf di—1 < —llgll* + BPY gf i
HngQ T g{dm 2
=gl + | 77— | gl dp—1 = | -1+ =F—— ] l|gxll
dfflyk—l g d{,lykfl
T
G—1dk—1
= (%) lgel® = BPY gF_ydi—1 < 0. (3.2)
k—1Yk—1
Thus, g!'dj, < 0 holds for all k¥ > 0. This completes the proof. O

Now to prove the convergence of our new hybrid method we need the following
assumptions.

Assumption 3.1. Let the level set

Q= {zeR"| f(z) < f(zo)},

where z is the initial guess, be bounded. That is, there exists a positive constant B
such that

lz| < B, VaeQ. (3.3)
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Assumption 3.2. In some neighbourhood N of 2 the function f is continuously differ-
entiable and its gradient g(z) is Lipschitz continuous, i.e. there exists a constant L > 0
such that

lg(z) — gl < Ll|lz —yll, Va,y € N.

Lemma 3.2. Consider any iteration of the form xj,1 = xp+aydy, where dy, is a descent di-
rection and «y, satisfies the generalized Wolfe conditions (1.11). Suppose Assumptions 3.1
and 3.2 hold, then either

lim inf ||gxl| =0
k—>00

or

f: (gF )"

I 12

< 00.
k=0

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold, and let {g;. } and {d}} be generated
by Algorithm 2.1. Then
lim inf ||gx|| = 0. (3.4
k—o00

Proof. We will prove this theorem by contradiction. Assume that (3.4) does not
hold. Then there exists a constant v > 0 such that

gkl > ~, Vk>o0. (3.5)

Now, by squaring both sides of dj + gx = ﬁ,fl dr_1 and dividing throughout by
(g4 di.)?, we get

2
ldel® (B Ndeal® 2 gl
2 = 2 T 2
(97 d) (97 d) Gk (gf dr)
2
_ (8 Ned—a? _( 1 ||9k||>2Jr 1
(g dy,)? lgell g di lgx1?
DY\ 2 2
di_
< (B2Y)° k2 1l 1 N 3.6)
(g7 dy) lox]
From (3.2) we have that
I?Y < d{gk
N dg_lgk—l
which gives that
2
ldel*  _ df g k> L
(ggdk)z N dgflgk—l (ggdk)Q llgr |1
d_1]|? 1
_ Mkl 3.7)

(o0 der)’ Tl
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Now, by noting that
Idol> _ 1

(dTg0)°  llgoll*’
and using (3.7) recursively, together with (3.5), we get that

k
HdkH2 Z 1‘

ng ’2 G

(9

Thus, ,
(92 di) 2

ldel)? — k41’

and therefore

> (g5 di)”
2 e

This is a contradiction to Lemma 3.2. Hence the proof is complete. O

4. Numerical results

In this section we present some numerical results of our proposed new hybrid con-
jugate gradient method, herein denoted NLCHSDY, and we compare the results with
those of the hybrid methods by Mo et al. [31] and Xu and Kong [45], herein denoted
BMHSDY and LCHSDY, respectively. All the algorithms are coded in MATLAB R2019b.
We test the methods using a total of 72 test problems selected from Andrei [3] and
Moré et al. [32], with dimensions ranging from 2 to 20000. We use the generalized
Wolfe conditions (1.11) for the step size «j, and set the parameters as ¢ = 0.01,
o1 = 0.1 and o5 = 0.1 for our proposed method. The other parameters a; and a- are set
to be 0.1 and 0.6, respectively. We terminated all the algorithms when ||gx|| < e = 1074,
or the maximum number of iterations exceeds 5000. The parameters for the other two
methods, that is, LCHSDY and BMHSDY, are set as in respective papers.

We present the numerical results in Table 1 and also compare the methods using
the performance profiles tool introduced by Dolan and Moré [14], in Figs. 1-3. In Ta-
ble 1, ‘FN’ denotes the name of the test problem, ‘DIM’ denotes dimension of the test
problem, ‘NI’ is the number of iterations, ‘FE’ is the number of function evaluations and
‘NGE’ gives the number of gradient evaluations. The dash ‘-’ indicates that the algo-
rithm (method) failed to reach the optimal solution within the maximum number of
iterations. It can be seen from Table 1 that the LCHSDY method struggled on a number
of problems as it failed to solve them within the maximum number of iterations. On the
other hand, the other two methods were very competitive, with the proposed method
managing to solve all the problems and the BMHSDY failing on only one problem.

The comparison of the methods is further presented in Figs. 1-3 using Dolan and
Moré performance profiles tool. Fig. 1 presents the performance profiles of number of
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Figure 3: Number of gradient evaluations performance profiles.
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Table 1: Table of numerical results.

FN DIM NLCHSDY BMHSDY LCHSDY
NI FE |INGE| NI FE NGE | NI FE | NGE
Brown & Denis 4 41 | 332 | 110 | 30 275 93 105 | 1594 | 107
Ext. Freudenstein & Roth| 5000 | 11 | 53 | 21 10 38 14 |2488|10962|2650
Ext. Beale 20000| 14 65 41 16 728 710 | 333 | 998 | 337
Perturbed Quadratic 2000 | 229 |1147| 231 | 346 | 1592 | 527 |3280|16401|3281
Helical 3 34 | 167 | 65 37 172 80 940 | 3762 | 941
Ext. Rosenbrock 20000| 41 | 208 | 93 | 30 | 377 | 312 - - -
Diagonal 1 50 37 (121 | 72 39 131 80 70 211 71
Box 3 dimensional 3 9 37 | 30 16 |58327|58318(4600|14452|9843
Freudenstein & Roth 2 10 | 48 20 8 32 12 |2216]| 8869 (2217
Biggs EXP6 6 98 | 296 | 244 | 94 | 286 | 244 - - -
Powell 4 43 | 162 | 87 12 45 22 - - -
Diagonal 2 2000 | 156 | 673 | 672 | 205 | 827 826 | 822 | 2327 |2324
Diagonal 3 500 | 133 | 728 | 451 | 137 | 526 220 | 755 | 3031 | 757
Raydan 1 2000 | 227 | 693 | 236 | 266 | 831 316 [2340| 7041 2341
Raydan 2 20000| 4 6 6 3 5 5 3 5 4

Ext. White & Holst 20000| 46 | 246 | 107 | 30 | 672 | 600 - - -
Ext. Himmelblau 20000| 8 32 | 15 9 35 17 19 60 22

Wood 4 122 | 630 | 176 | 157 | 779 | 365 - - -
Ext. Tridiagonal 1 20000| 14 | 61 | 51 2 40 38 |2113| 4225|2114
Ext. BD1 20000 10 | 35 | 24 | 10 54 43 16 48 29
BDEXP 20000| 5 49 | 49 5 49 49 16 | 152 | 152
Gen. Rosenbrock 200 [1089(5467|1190(2662|12012| 4237 | - - -
APQ 5000 | 365 [2191| 727 | 493 | 2450 | 526 - - -
Diagonal 7 20000| 4 10 6 4 10 6 4 9 5
Diagonal 8 20000| 3 8 5 3 8 5 3 8 4
Beale 2 13 | 56 | 34 | 12 | 239 | 224 | 71 | 191 | 74
Rosenbrock 2 41 | 208 | 93 | 29 | 373 | 311 |3393|13664|3484
QUARTC 20000| 3 22 | 20 4 24 23 14 84 81
Ext. Penalty 20000( 16 | 134 | 30 | 11 | 120 39 33 | 287 | 34
BIGGSB1 100 | 100 | 206 | 107 | 63 | 132 70 |4050| 8101 |4051
Gaussian 3 1 3 2 1 3 2 1 3 2
Penalty I 20000| 21 [ 149 | 57 | 27 | 363 | 290 | 85 | 374 | 146
Penalty II 10 14 | 58 | 32 | 13 89 70 | 101 | 308 | 103

Ext. quad. pen. QP1 |20000| 4 25 16 7 29 12 12 | 1053 |1009
Ext. Tridiagonal 2 20000 19 | 45 26 | 23 61 40 26 | 1055|1017
Ext. Wood 20000( 174 | 890 | 238 | 123 | 791 | 465 - - -
Gen. Tridiagonal 1 20000 17 | 51 21 17 51 21 23 69 24
Gen. Tridiagonal 2 20000| 40 | 139 | 53 | 42 | 149 65 70 | 216 | 71
Nondquar 20000| 500 [1354|1170| 664 | 1850 | 1568 - - -
Hager 10000| 63 | 254 | 75 79 | 1287 | 1134 | 165 | 1525 |1178
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Table 1: Table of numerical results (cont'd).

NLCHSDY BMHSDY LCHSDY
FN DIM
NI FE |INGE| NI | FE |NGE| NI FE | NGE
Himmelbg 20000 4 47 47 | 4 | 47 | 47 18 209 | 209
Sinquad 20000 495 |3560(1130| 55 |1480|1256| - - -
Liarwhd 20000 37 | 261 | 57 |19 | 168 | 96 | 494 | 2682 | 495
Cosine 20000 7 24 18 7 | 24 17 7 24 11
Gen. White & Holst 100 [1822(9929|2508| - - - - - -
Diagonal 4 20000 6 14 8 6 14 7 66 176 | 67
Ext. Maratos 5000 | 65 | 398 | 188 | 51 | 534 | 409 |1836| 7355 |1849
Bard 3 18 | 61 | 39 |13 | 52 | 35 |4191| 9786 |4192
Arwhead 2000 | 18 61 15 5 25 8 61 | 1289 |1052
Ext. TET 5000 5 14 9 5 14 9 19 42 20
Ext. Denschnb 20000 4 13 8 6 | 23 17 12 25 13
Ext. Denschnf 20000 10 | 61 33 8 34 13 15 61 16
Ext. Powell singular 10000 67 | 255|144 | 16| 61 | 32 - - -
Ext. PSC1 20000| 10 | 26 14 | 10| 25 14 13 31 14
Gen. PSC1 20000 26 | 183 | 169 | 10 | 69 63 15 145 71
BDQRTIC 500 | 86 | 433|123 |77 |323| 91 - - -
Gen. Quartic 20000 7 24 | 17 | 7 | 17 | 10 9 22 10
Ext. quad. exp. EP1 10000| 2 112 | 66 3 13 4 3 13 4
Engvall 20000| 19 | 47 25 |19 {1051(1024| 26 100 | 27
EG2 200 | 24 (172 | 71 |17 | 105 | 58 - - -
Dqdrtic 20000 12 50 19 5 19 7 | 408 | 1632 | 409
Brown almost-linear 200 7 71 | 35 | 50 {1002| 999 | 13 53 14
Broyden tridiagonal 20000| 30 [ 103 | 40 | 27| 88 | 35 | 35 | 109 | 36
Gulf 3 60 | 258 | 181 | 34 | 258 | 202 - - -
Dixon3dq 100 | 100 | 206 | 107 |177| 370 | 235 |4529| 9059 | 4530
Ext. quad. pen. QP2 20000| 44 | 251 | 112 | 37| 292 | 192 | 983 | 4035 | 1076
Nondia 2000 | 13 88 19 7 | 44 14 | 201 | 1104 | 202
Nonscomp 20000| 41 | 150 | 67 [35|139| 75 50 156 | 51
Perturbed Quad. Diagonal [20000( 309 |1784| 497 |254|1097| 338 |3148|16897|3149
Quadratic QF1 5000 | 365 |1829| 369 [508|2409| 796 | - - -
Quadratic QF2 5000 | 645 |3880| 652 [660|3330| 723 - - -
Tridia 500 | 476 |2785| 880 |387|1903| 457 - - -

iterations, Fig. 2 is function evaluations performance profiles and lastly, Fig. 3 gives
the performance profiles of gradient evaluations. It is clear from these figures that our
proposed NLCHSDY method outperforms the other two methods. Thus, the NLCHSDY
method, compared to the other two methods, is very effective.

5. Conclusion

In this paper we proposed a new hybrid conjugate gradient method as a linear com-
bination of the Dai-Yuan (DY) method and either Hestenes-Stiefel (HS) method or its
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modifications. The method was shown to satisfy the sufficient descent condition and
its global convergence was established under the generalized Wolfe conditions. The
method was tested on a number of benchmark problems from the literature and com-
pared with other methods. Numerical results show that our new proposed hybrid con-
jugate gradient method is more effective compared to those other conjugate gradient
methods.
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