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Abstract. We present a new algorithm for generating layer-adapted meshes for the

finite element solution of singularly perturbed problems based on mesh partial dif-

ferential equations (MPDEs). The ultimate goal is to design meshes that are similar
to the well-known Bakhvalov meshes, but can be used in more general settings:

specifically two-dimensional problems for which the optimal mesh is not tensor-
product in nature. Our focus is on the efficient implementation of these algorithms,

and numerical verification of their properties in a variety of settings. The MPDE is

a nonlinear problem, and the efficiency with which it can be solved depends ad-
versely on the magnitude of the perturbation parameter and the number of mesh

intervals. We resolve this by proposing a scheme based on h-refinement. We present

fully working FEniCS codes [Alnaes et al., Arch. Numer. Softw., 3 (100) (2015)]
that implement these methods, facilitating their extension to other problems and

settings.
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1. Introduction

1.1. Motivation and outline

Differential equations arise in many areas of science and engineering. They model

how phenomena change over time or space, such as how a cancerous tumour grows,

how a string vibrates, or how a pollutant disperses. So their solution is of fundamental

importance. Analytical solutions are rarely available, and so one must rely on approx-

imate solutions, obtained using numerical schemes.“Singularly perturbed” differential
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equations (SPDEs) have a small positive constant, usually denoted ε, multiplying the

leading term. Solutions to SPDEs typically exhibit boundary layers (and may also con-

tain interior layers). Resolving these layers is a primary concern of the numerical so-

lution of SPDEs. This is usually achieved using specialised layer-adapted meshes. Our

goal is to present a novel method to efficiently generate such meshes, and so compute

qualitatively and quantitatively accurate numerical solutions to SPDEs.

The SPDEs that we focus on in this paper are elliptic reaction-diffusion problems of

the form

−ε2∆u+ ru = f in Ω ⊆ R
d with u|∂Ω = 0, (1.1)

where d = 1, 2. Here, r and f are given (smooth) functions, ε > 0 and r ≥ β2 on

Ω, where β is some positive constant. The so-called “reduced problem” for (1.1) is

obtained by formally setting ε = 0 and neglecting the boundary conditions; in the case

of (1.1), this is u0 = f/r. The solution to (1.1) will feature layers near boundaries

where u0 does not agree with the boundary conditions. Note that (1.1) is singularly

perturbed in the sense that it is well-posed for all non-zero values of ε, but ill-posed if

one formally sets ε = 0. (For a more formal definition see, e.g., [21, p. 2] or [14, p. 2-

3]).

To ensure the layer regions of solutions to (1.1) are resolved, the local mesh width

needs to be very small, in a way that depends on ε. Since we are interested in the

case where ε ≪ 1, uniform meshes are completely unsuitable; highly non-uniform

layer-adapted meshes are preferred [21].

The novel aspect of this article is our proposal to use “Mesh PDEs” (MPDEs) to gen-

erate suitable layer-adapted meshes. We present algorithms to generate these meshes

and Python code to implement them in FEniCS [17]. In addition, we present numerical

results, demonstrating how these algorithms can be applied to both one-dimensional

and two-dimensional problems.

This article is organised as follows. Section 2 is devoted to one-dimensional prob-

lems, the formulation of finite element methods (FEMs) for them, and the implemen-

tation of these methods in FEniCS (with full code presented in Appendix A). In Sec-

tion 2.2, we show why layer resolving meshes are crucial, and present a particularly im-

portant example, the graded Bakhvalov mesh [21]. There are several ways to describe

these meshes, but in Section 2.3 we introduce a novel approach, based on MPDEs. The

efficient solution of these MPDEs is the topic of Section 2.4. Their effectiveness is veri-

fied in Section 2.5 for scalar and coupled systems of equations (in the scalar case, with

the code presented in Appendix C).

In Section 3 we consider two-dimensional SPDEs, with a focus on problems for

which tensor-product grids are not appropriate. In Section 3.1 we describe two-dimen-

sional adapted meshes. We present MPDEs and an algorithm for generating these

meshes in Section 3.2, and numerical results in Section 3.3. FEniCS code for gen-

erating two-dimensional layer-adapted meshes using an MPDE is in Appendix D. As

such, the contributions of this paper are both expository (motivating MPDEs for mesh

generation, and showing how they can be implemented) and novel (presenting a new

approach for constructing layer-adapted meshes, and for solving MPDEs for SPDEs).
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The notation we use is standard; we follow the conventions in Ciarlet [4, §2.1] (see

Glossary of Symbols: Notation for specific vector spaces). Specifically, we use H1(Ω)
to denote the usual Sobolev space of functions on the domain Ω, and H1

0 (Ω) for the

subspace of H1(Ω) of functions that vanish on the boundary.

2. One-dimensional problems

2.1. A scalar problem, and its FEM solution

The first boundary layer problem we consider is (1.1) with d = 1, i.e.,

−ε2u′′(x) + ru(x) = f for x ∈ Ω := (a, b) (2.1a)

with boundary conditions,

u(a) = u(b) = 0. (2.1b)

In spite of its simplicity, this is a very frequently studied problem. With reasonable

assumptions on f it features boundary layers at one or both boundaries. Indeed, it is

one of the problems solved by the first boundary-layer adapted mesh of [3]. That paper

applied a finite difference scheme, but here we use FEMs and present a simple FEniCS

implementation.

The bilinear form associated with (2.1) is

B(u, v) := ε2(u′, v′) + (ru, v), (2.2)

where (·, ·) is the usual L2 inner product. Then the weak form of (2.1) is: find u ∈
H1

0 (Ω), such that

B(u, v) = (f, v) for all v ∈ H1
0 (Ω). (2.3)

One obtains a finite element method by restricting the choice of u and v to a finite

dimensional subspace, V h
0 , of H1

0 (Ω). That is, one finds uh ∈ V h
0 , such that

B(uh, vh) = (f, vh) for all vh ∈ V h
0 . (2.4)

Specifically, one computes the coefficients of the uh, with respect to some basis, that

solve (2.4). The most elementary choice of V h
0 is the space of piecewise-linear functions

on a given mesh: the P1-FEM.

Since the bilinear form is symmetric and positive definite (i.e., B(u, u) > 0 for any

non-zero u), it induces a norm, the “energy norm”

‖u‖E :=
√

B(u, u).

It is natural to analyse the error in an FEM solution with respect to this norm.

The Galerkin FEM is very powerful, and yet can be quite complicated to implement.

It is powerful in the sense that it generalises to many classes of PDEs, domains of vari-

ous dimensions and shapes, and incorporates many spaces of approximating functions,
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all within the same theoretical framework. Due to the “power of abstraction” [8] the

mathematical formulation of the method is essentially the same regardless of these

possible complications.

To implement a FEM, one must discretise the domain and compute transformations

of quantities onto a reference element [9]; almost always quadrature is required to

compute the associated integrals. Contributions from the elements are assembled to

generate a system of linearly independent algebraic equations [23]. Finally, this system

of equations is solved; careful selection of suitable solvers for larger problems is usually

necessary. Normally, code to visualise the numerical solution and calculate a posteriori

error estimates is also needed.

It is clear that there is great potential value in general purpose software which can

automate as many of these tasks as possible. Notable examples include FEniCS [1],

deal.II [2], MFEM [18], FreeFEM [10], and Firedrake [19].

Our focus is on the use of FEniCS, a free, open-source software system, that au-

tomates many aspects of implementing FEMs while still allowing the user access to

lower-level features. Using either the Python or C++ interfaces, the user specifies the

domain and how to discretise it (i.e., define a mesh), and their choice of basis func-

tions to use. Then, they define the weak form of the problem using a syntax that is very

similar to the mathematical formulation. Other components of the suite then take care

of assembling and solving the related system of algebraic equations.

To demonstrate a simple use of FEniCS we consider the following specific example

of (2.1):

−ε2u′′(x) + u(x) = 1− x for x ∈ Ω := (0, 1) with u(0) = u(1) = 0. (2.5)

When 0 < ε≪ 1 the solution exhibits a layer near x = 0.

In Listing 1, we show a snippet of FEniCS code; note that the syntax is similar to

the mathematical formulation of (2.3).

Listing 1: The weak form of (2.5) for FEniCS.

f = Expression (’1-x[0] ’, degree =2)

a = epsilon *epsilon *inner (grad(u), grad(v))*dx + inner (u,v)*dx

L = f*v*dx

solve(a==L, uN , bc) # Solve , applying the boundary conditions strongly

In Appendix A we present the complete Python code for solving the one-dimensional

singularly perturbed reaction-diffusion equation (2.5) in FEniCS on a uniform mesh.

2.2. The necessity of layer resolving meshes

A useful numerical solution to (2.5) should be both qualitatively and quantitatively

representative of the exact solution. That is, it should accurately determine both the

layer location and width. However, consider the numerical solutions to (2.5), shown

in Fig. 1, which were generated using uniform meshes. One can see that the solutions

change rapidly near x = 0, but away from this layer region they closely resemble

the reduced solution to (2.5), i.e., u0 = 1 − x. In Fig. 1(a), where ε = 10−2, one
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Figure 1: FEM solutions to (2.5) on uniform meshes.

can see that a mesh with N = 16 intervals does not resolve the layer region; taking

N = 128 appears to be sufficient, but only because N is O(ε−1). This is demonstrated

in Fig. 1(b) where ε = 10−4, and the numerical solution with N = 128 is unstable. In

general, a satisfactory numerical solution is obtained with a uniform mesh only when

N is O(ε−1), which is not feasible since we wish to accurately solve this problem for

any positive ε, irrespective of how small it is.

Obviously, for a problem such as (2.5) we need a mesh that is very fine in the

layer region. One strategy for generating such a mesh is to use asymptotic information

concerning the solution (and its derivatives) and, specifically the location and width of

the layer. Where this information is available, one can construct a priori fitted layer-

resolving meshes. Among the class of such meshes that have been successfully applied

to solving SPDEs, the piecewise uniform mesh of Shishkin [24] and the graded mesh of

Bakhvalov [3] are the most widely studied. Both these methods yield parameter-robust

numerical solutions.

Recall that a mesh is a partition of the domain into intervals in one-dimension and

triangles or quadrilaterals in two-dimensions. We denote a generic one-dimensional

mesh, with N intervals on [a, b], as ω := a = x0 < . . . < xN = b. One can describe

a mesh by explicitly listing the coordinates of each xi, but we will describe a mesh in

terms of a “mesh generating function”.

Definition 2.1 (Mesh generating function). A mesh generating function is a strictly

monotonic bijective function ϕ : Ω
[c]

:= [0, 1] → Ω := [a, b] that maps a uniform

mesh ξi = i/N , for i = 0, 1, . . . , N , to a possibly non-uniform mesh xi = ϕ(i/N), for

i = 0, 1, . . . , N , with ϕ(0) = a and ϕ(1) = b.

For example, if ϕ(ξ) = ξ, then the resulting mesh will be a uniform mesh on the

interval Ω as shown in Fig. 2(a). If ϕ(ξ) = ξ4, then the resulting mesh is graded on the

interval Ω, with mesh points closest together when ξ is close to 0, as shown in Fig. 2(b).
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Figure 2: Meshes generated when (a) ϕ(ξ) = ξ and (b) ϕ(ξ) = ξ4.

The first layer-adapted mesh for SPDEs proposed was the celebrated Bakhvalov

mesh [3]. It is graded, and very fine, in layer regions, and uniform elsewhere. We

will now outline its construction based on the presentation in [14]. To motivate the

mesh we will consider the reaction-diffusion problem (2.5), whose solution has a sin-

gle boundary layer which is located near x = 0. Let exp(−βx/ε) be a function that

represents this boundary layer. Then the mesh points near x = 0 are chosen to satisfy

exp

(−βxi
σε

)

= 1− i

qN
for i = 0, 1, . . . , (2.6)

where q ∈ (0, 1) is, roughly, the portion of mesh points used to resolve the layer, σ > 0
is a constant that depends on the underlying method, typically chosen to be the formal

order of the underlying method, and N is the number of mesh intervals. Away from

the layer, the mesh is uniform.

The mesh is expressed in terms of the mesh generating function,

ϕ(t) =







χ(t) := −σε
β

ln

(

1− t

q

)

for t ∈ [0, τ ],

π(t) := χ(τ) + (t− τ)ϕ′(τ) elsewhere.
(2.7)

The mesh generated has mesh points xi = ϕ(i/N) for i = 0, 1, . . . , N . One chooses τ
in (2.7) so that ϕ(1) = 1, see [21, (2.136)]. A minor complication in the definition of

the mesh is that τ is not prescribed in terms of an explicit formula, but as the solution

of a non-linear equation.

It can be shown (e.g., [20]) that the error in the P1-FEM solution on this mesh

satisfies

‖u− uh‖E ≤ C
(

ε
1
2N−1 +N−2

)

, (2.8)

where C is a constant independent of ε and N . We postpone verifying the robustness

of (2.8) to Section 2.5. However, in Fig. 3 we show the numerical solution to (2.5)

computed with ε = 10−4 and N = 16. Contrasting with Fig. 1 we see that the layer

is resolved even though N ≪ ε−1. Since the layer is too thin to see clearly, Fig. 3

also shows uh on a domain where the layer region has been stretched. This view

provides a useful way of thinking of suitable layer-adapted meshes. We can consider

a mesh generating function as defining a physical domain Ω: a uniform mesh on the



Generating Layer-Adapted Meshes Using Mesh Partial Differential Equations 7

0.0 0.2 0.4 0.6 0.8 1.0

x/ξ

0.0

0.2

0.4

0.6

0.8

1.0

(u
) h
/(
ū
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Figure 3: FEM solution to (2.5) with ε = 10−4 and N = 16 generated on an adapted mesh, ω, and the
numerical solution transformed onto a uniform mesh, ω[c].

computational domain Ω[c] is equivalent to the layer-adapted mesh on Ω. Then if uh(x)
is transformed from Ω onto Ω[c], the layer region will be stretched and no sharp layer

is exhibited in ūh(x(ξ)).

2.3. MPDEs

We now come to the core element of this article, and present a way of constructing

a mesh generating function that is (essentially) equivalent to that described in Sec-

tion 2.2, but expressed as the solution to a differential equation. These “mesh PDEs”,

introduced by Huang et al. [11], are usually considered as a way of preforming r-
refinement during the iterative a posterior refinement of a mesh. Here, however, the

PDE features a coefficient which controls the concentration of points in the resulting

mesh. Although in one dimension this is equivalent to a well-known equidistribution

principle [6], which we now explain, it allows for generalisation to higher dimensions.

One begins by choosing a mesh density function, ρ : Ω → R>0. A mesh, ω, on Ω, is

said to “equidistribute” ρ if
∫ xi+1

xi

ρ(x)dx =
1

N

∫ b

a

ρ(x)dx for all i = 0, 1, . . . , N − 1. (2.9)

If we choose ρ = C, a constant, then the equidistributing mesh is uniform (Fig. 2(a)).

More typically, ρ is not constant and the equidistributing mesh is finer where ρ is large.

For example, if ρ = 1/ξ3, then x(ξ) = ξ4 is a solution to (2.9) and the mesh generated

is as shown in Fig. 2(b).

We can derive an MPDE by considering the equidistribution principle as a mapping

x(ξ) : Ω
[c]

:= [0, 1] → Ω := [a, b] from the computational coordinate ξ to a physical

coordinate x, which satisfies
∫ x(ξ)

a

ρ(x)dx = ξ

∫ b

a

ρ(x)dx. (2.10)
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First, we differentiate (2.10) with respect to ξ. We can see that x(ξ) satisfies

ρ(x)
dx

dξ
=

∫ b

a

ρ(x)dx, (2.11)

where the right-hand side is independent of ξ. Differentiating again with respect to ξ
gives the MPDE,

(

ρ(x)x′(ξ)
)

′

= 0 for ξ ∈ Ω[c]. (2.12a)

We impose the boundary conditions,

x(0) = a, x(1) = b, (2.12b)

where a and b are the end points of the resulting mesh. The solution to (2.12) is a mesh

generating function; we solve it numerically using a FEM. Specifically, one computes

xh(ξ) ∈ V h a finite dimensional subspace of H1(Ω), such that
(

ρ(xh)x
′

h(ξ), v
′

h

)

= (0, vh) for all vh ∈ V h
0 (2.13a)

with

xh(0) = a, xh(1) = b. (2.13b)

Since (2.13) is a nonlinear problem, we use a fixed point iterative method to find

a numerical solution. At each iteration, k, we solve
∫ 1

0
ρ
(

x
[k−1]
h

)(

x
[k]
h

)

′

v′hdξ = 0. (2.14)

Therefore, we require a stopping criterion, which verifies that the mesh generated ap-

proximately equidistributes ρ. We set res[k] to be the function on the P1 space, whose

nodal values are given by

res[k](ξi) =



















0, i = 0,
∫ ξi+1

ξi−1

ρ
(

x
[k]
h

)(

x
[k]
h

)

′

ψ′

idξ, i = 1, . . . , N − 1,

0, i = N.

(2.15)

The iteration terminates when (2.15),

∥

∥res[k]
∥

∥

0,Ω
=

(∫ 1

0

(

res[k]
)2
dξ

)

1
2

≤ TOL, (2.16)

where the value of TOL is chosen for each problem (typical values are reported in the

relevant sections below).

The construction of the Bakhvalov mesh presented in Section 2.2 is essentially that

originally proposed in [3]. However, it can also be expressed as the mesh which equidis-

tributes the mesh density function

ρ(x) = max

{

1,K
β

ε
exp

(

−βx
σε

)}

(2.17)
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here one can think of ρ as representing point-wise bounds |u′(x)|, and, since the error

in the FEM is locally proportional to |u′(x)|, it is desirable that the mesh equidistributes

this quantity so that its contribution over any one element is minimised. Taking ρ as

defined in (2.17), the (exact) solution to (2.12) generates a Bakhvalov mesh. Although,

as we discuss in Section 2.4, we use the FEM solution to (2.12), we still obtain a mesh

that is almost indistinguishable from that constructed using (2.7).

It remains to selectK in (2.17), the positive constant that determines the proportion

of mesh points that resolve the layer [14]. First note that, when

K
β

ε
exp

(

−βϕ(τ)
σε

)

= 1, (2.18)

the transition point, ϕ(τ), of the mesh generated is the same as in (2.7). Combin-

ing (2.7) with (2.18), yields

K =
εq

(β(q − τ)) . (2.19)

However, this is not explicit, since τ is not known. In practice, it is sufficient to deter-

mine K using an approximation of τ . We take

τ ≈ q − σε(1− q)
β

,

which is similar to an approximation used in several studies (see [21, p.120]), but

comes from ensuring ϕ(1) = 1 as ε→ 0. Substituting this into (2.19) gives

K :=
q

σ(1− q) , (2.20)

which is what we use in practice.

2.4. Algorithms and implementation

We now discuss how to implement the MPDE approach described in Section 2.3,

first directly (Algorithm 2.1) and then with some optimisations with ideas involving

both an MPDE and h-refinement (Algorithm 2.2).

In Table 1 we report the number of iterations taken by Algorithm 2.1 with TOL =
0.02 and Max iterations = N/2+5. The simplicity of the algorithm is appealing, but it is

Table 1: Number of iterations required by Algorithm 2.1.

ε\N 32 64 128 256 512 1024

1 1 1 1 1 1 1

10−2 15 14 15 15 14 13

10−4 21 37 69 132 256 343

10−6 21 37 69 133 261 517

10−8 21 37 69 133 261 517
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Algorithm 2.1

Generate a layer resolving mesh using an MPDE

1: Input : N, the number of intervals in the mesh.
2: Input : ρ, mesh density function.
3: Input : TOL.

4: Input : Max iterations.

5: Set ω[c] := {ξ0, ξ1, . . . , ξN} to be a uniform mesh discretising Ω
[c]
;

6: Set x(ξ) = ξ for ξ ∈ Ω
[c]
;

7: s← x;
8: k ← 0;
9: do

10: set x to be the P1-FEM solution, on ω[c], to

(

ρ(s)x′(ξ)
)

′

= 0 for ξ ∈ Ω[c] with x(0) = a, and x(1) = b, (2.21)

11: s← x;
12: calculate ‖res[k]‖0,Ω; k ← k + 1;
13: while ‖res[k]‖0,Ω > TOL and k ≤ Max iterations;
14: Set ω := x(ω[c]) to be the adapted mesh on Ω;

clearly very inefficient. This is because only one mesh point is added to the layer region

at each iteration, and so the number of iterations required to achieve convergence is

O(qN), where q is the portion of mesh points used to resolve the layer region.

To speed up convergence, we refine the algorithm to alternate between solving the

MPDE and h-refinement. Starting with a uniform mesh with 4 intervals, we apply

three iterations of the MPDE, and then a single uniform h-refinement, which doubles

the number of mesh intervals. When the desired number of mesh points is reached,

we apply the MPDE until convergence is achieved; see Algorithm 2.2 for details, and

Appendix C for the FEniCS implementation.

In Table 2 we report the total number of iterations required on the final mesh. Ob-

serve that only three or four iterations are ever required on the final mesh. Since (2.22)

is first solved on a sequence of grids with 4, 8, 16, . . . , N/2, intervals, in fact, O(log(N))
iterations are applied, but this is still far more efficient than Algorithm 2.1. Further,

Table 2: Number of iterations required using Algorithm 2.2 on the final computational domain.

ε\N 32 64 128 256 512 1024

1 1 1 1 1 1 1

10−2 1 1 1 1 1 1

10−4 3 2 2 1 1 1

10−6 4 4 3 3 2 1

10−8 4 4 4 4 3 3



Generating Layer-Adapted Meshes Using Mesh Partial Differential Equations 11

Algorithm 2.2

Generate a layer − adapted mesh using an MPDE, and h−refinement.

1: Input : N, the number of intervals in the final mesh.
2: Input : ρ, a mesh density function.
3: Input : TOL

4: Set ω[c;0] := {ξ0, ξ1, . . . , ξ4} to be the uniform mesh on Ω
[c]

with 4 intervals;

5: Set x(ξ) = ξ for ξ ∈ Ω
[c]
;

6: s← x;
7: k ← 0;
8: for i in 0 : (log 2(N) − 3) do

9: for j in 1 : 3 do

10: set x to be the P1-FEM solution, on ω[c;i], to

(

ρ(s)x′(ξ)
)

′

= 0 for ξ ∈ Ω[c], x(0) = a and x(1) = b; (2.22)

11: s← x;
12: end for

13: w[c;i+1] ← uniform h−refinement of w[c;i];
14: s← s interpolated onto w[c;i+1];
15: end for

16: do

17: set x to be the P1-FEM solution, on ω[c;i], to

(

ρ(s)x′(ξ)
)

′

= 0 for ξ ∈ Ω[c], x(0) = a and x(1) = b; (2.23)

18: s← x;
19: calculate ‖res[k]‖0,Ω;
20: k ← k + 1;
21: while ‖res[k]‖0,Ω > TOL
22: Set ω := x(ω[c;i]) to be the adapted mesh on Ω;

we can choose a much larger tolerance for Algorithm 2.2: the results in Table 2 are

computed with TOL = 0.4 with no noticeable loss of accuracy (see Section 2.5.1).

2.5. Numerical results

We now present numerical results for the scalar one-dimensional reaction-diffusion

equation (2.5), in Section 2.5.1, to verify the robustness of numerical solutions com-

puted on the mesh generated by Algorithm 2.2. Then, in Section 2.5.2, we show how

the approach extends automatically to a more complex setting: a coupled system of

one-dimensional problems whose solutions have multiple overlapping layers.
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2.5.1. A scalar reaction-diffusion equation

We start by applying Algorithm 2.2 to generate a mesh on which one can solve (2.5).

We take standard values of the parameters in (2.17): σ = 2.5, β = 0.99, K = 0.4, and

set TOL = 0.4. We calculate the error in the numerical solution as

eh(x) :=
∣

∣u2h(x)− uh(x)
∣

∣,

where uh is the P1-FEM solution and u2h, our best estimate of the ‘true’ solution, is the

P2-FEM solution on the same mesh; that is, it is the solution computed using a Galerkin

method with quadratic basis functions.

Errors in the numerical solutions to (2.5), computed on the mesh generated by

Algorithm 2.2, are shown in Table 3.

Table 3: ‖eh‖E for (2.5) using Algorithm 2.2.

ε\N 32 64 128 256 512 1024

1 4.895e-03 2.448e-03 1.224e-03 6.119e-04 3.060e-04 1.530e-04

10−2 3.887e-03 1.949e-03 9.749e-04 4.875e-04 2.438e-04 1.219e-04

10−4 4.114e-04 2.053e-04 1.031e-04 5.163e-05 2.586e-05 1.294e-05

10−6 4.139e-05 2.071e-05 1.035e-05 5.179e-06 2.590e-06 1.296e-06

10−8 4.141e-06 2.071e-06 1.036e-06 5.181e-07 2.590e-07 1.295e-07

They converge as expected: the O(ε 1
2N−1) term in (2.8) dominates (it is from the H1-

component of the error). The robust convergence is also clearly exhibited in Fig. 4,

which shows the error converges linearly in N , and scales like ε
1
2 .

If one was to compare these with results obtained using a standard Bakhvalov mesh,

one would see that they agree to 3 digits for small ε. Interestingly, for moderate values

of ε, the results of Algorithm 2.2 out-perform the standard Bakhvalov mesh by about

30%.
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Figure 4: Plot of ‖eh‖E for (2.5) using Algorithm 2.2.
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2.5.2. Coupled system of reaction-diffusion equations

We now consider how to apply the MPDE approach when solving problems with so-

lutions that contain over-lapping layers. Our test problem is a coupled system of two

reaction-diffusion equations, with variable coefficients, taken from [16]

−
(

ε1 0
0 ε2

)2(
u1
u2

)

′′

+

(

2(x+ 1)2 −(1 + x3)

−2 cos (πx/4) (1 +
√
2) exp(1− x)

)(

u1
u2

)

(2.24a)

=

(

2 exp(x)
10x+ 1

)

for x ∈ Ω := (0, 1)

with boundary conditions,

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0. (2.24b)

The case of interest is when ε1 and ε2 are both small but of different orders of magni-

tude. Without loss of generality, we will take ε1 ≪ ε2. While both solution components

exhibit layers near x = 0 and x = 1 that are of width O(ε2), u1 also has layers of width

O(ε1), as can be seen in Fig. 5. The arguments in [15, §4.1] can be adapted to show

that, if (2.24) is solved on a suitably constructed Bakhvalov mesh, then

‖u− uh‖E ≤ C
((

ε
1
2
1 + ε

1
2
2

)

N−1 +N−2

)

, (2.25)

where C is a constant independent of ε1, ε2 and N .

To generate a suitable, Bakhvalov-style, mesh for this problem, we solve the MPDE

(2.12), using Algorithm 2.2, with

ρ(x) = 1 +K
β

ε1

(

exp

(

− βx
σε1

)

+ exp

(

−β(1− x)
σε1

))

+K
β

ε2

(

exp

(

− βx
σε2

)

+ exp

(

−β(1− x)
σε2

))

(2.26)
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Figure 5: FEM solutions to (2.24) with ε1 = 10−8 and ε2 = 10−4.
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Figure 6: FEM solution (u1)h to (2.24) with ε1 = 10−8, ε2 = 10−4 and N = 32, generated on ω, and the

solution transformed onto ω[c].

with K = 0.1 and σ = 2.5. As per standard theory, β is chosen so that β2 is a lower

bound on the row sums of the reaction matrix; we have taken β = 0.99. Note that (2.26)

is a minor variation on (2.17); this form is a little more efficient to implement since

one does not have to compute the maximum of multiple terms. Although the result-

ing mesh is not strictly a Bakhvalov mesh—away from the layer, the mesh is not truly

uniform—the difference is imperceptible in finite precision.

We implement Algorithm 2.2, taking TOL = 0.5 and performing five iterations of

the MPDE before each h-refinement. A typical computed solution, on both physical and

computational domains, is shown in Fig. 6. These verify that the layers are successfully

resolved.

The number of iterations performed on the final mesh are shown in Table 4. The

errors in the numerical solution are shown in Fig. 7, and convergence is consistent with

the bound in (2.25).

Table 4: Number of iterations for (2.24) with ε1 = 10−8, on the final computational domain.

ε2\N 32 64 128 256 512 1024

1 1 4 1 1 1 2

10−2 3 2 2 1 1 1

10−4 3 2 1 1 1 1

10−6 3 3 3 2 1 1

10−8 4 2 2 2 2 1

3. Two-dimensional problems

The technique described in Section 2 demonstrates the applicability of the method

to one-dimensional problems. However, one can argue that it presents no advantage

over any other method for equidistributing a chosen mesh density function. The same
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Figure 7: Plot of ‖eh‖E for (2.24) with ε1 = 10−8.

would be true for two-dimensional problems, if we restricted our interest to problems

for which tensor-product grids are appropriate. Therefore, in this section we consider

scenarios where tensor-product grids are not appropriate.

Our two test problems are, again, reaction-diffusion problems, and posed on convex

quadrilateral domains. Their solutions may exhibit layers near the boundaries of the

domain, depending on boundary conditions and the right-hand side of the problem.

(Interior layers are also possible, but we do not consider such a scenario). In Section 3.2

we introduce generalisations of the MPDE in (2.12) to two distinct two-dimensional

settings. The first involves solving a reaction-diffusion problem on a non-rectangular

domain, and requires a mesh that is non-uniform in one coordinate direction. So the

MPDE is required only for mesh generation in that direction. In the second example,

the solution features layers that vary in width throughout the boundary, and a fully

two-dimensional MPDE is applied. In Section 3.2, we also present an extension of

Algorithm 2.2 to two-dimensions.

In Section 3.3 we present numerical results when the problems are solved using the

P1 Galerkin FEM on the MPDE-generated meshes of Section 3.2. It has been proven

that the error estimate in (2.8) holds when this FEM is applied on a Bakhvalov-type tri-

angular mesh for solving reaction-diffusion problems with constant diffusion on a unit

square [26]. Rigorous error estimates for the problems we present in this section are

beyond the scope of this paper. However, numerical results suggest that the error esti-

mate in [26] extends to these cases.

The associated FEniCS code is given in Appendix D.

3.1. Layer-adapted M-uniform meshes

Describing an adapted mesh in two-dimensions is somewhat more complicated than

in one dimension; in the latter case the mesh connectivity is automatic, and so the
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solution to the MPDE, for a particular mesh density function, uniquely defines the

mesh. In two dimensions a set of points does not lead to a uniquely defined mesh,

since many different connectivities are possible. There are several ways this can be

addressed; here we consider the simplest approach, that of an “M -uniform mesh” [13,

§4.1] (alternatives involve so-called “mesh control” and “function approximation”, but

are not considered here).

The idea of an M -uniform mesh is that our adapted mesh can be considered as

a uniform mesh in some metric space on Ω, on which, M = M(x), a matrix-valued

(“monitor”) function is defined. Roughly, the MPDE is responsible for determining how

mesh points move between the uniform and adapted meshes, and the adapted mesh

inherits the connectivity of the uniform mesh.

Equipped with this idea, we will investigate how the MPDE-based algorithms for

generating one-dimensional layer-adapted meshes can be extended to two-dimensional

settings.

3.2. Two-dimensional MPDEs and their solution

We present suitable MPDEs for generating two-dimensional layer-adapted meshes

for singularly-perturbed problems, whose solution exhibits layers. If one requires a two-

dimensional mesh that is layer-adapted only in one direction, for example, in the y-

direction (see Section 3.3.1), then, a suitable MPDE, for x(ξ1, ξ2) = (x, y)T , is

ρ
(

x(ξ1, ξ2)
)

xξ2ξ2

(

ξ1, ξ2)
)

= (0, 0)T for (ξ1, ξ2) ∈ Ω[c] (3.1)

with appropriate boundary conditions.

Alternatively, a problem may demand a mesh that is layer-adapted in both directions

(see Section 3.3.2). Then we propose that a suitable MPDE, is the two-dimension

vector-valued Poisson equation, for x(ξ1, ξ2) = (x, y)T ,

−∇ · (M(x(ξ1, ξ2))∇x(ξ1, ξ2)) = (0, 0)T for (ξ1, ξ2) ∈ Ω[c] (3.2)

with appropriate boundary conditions. This is similar to that proposed in [12, Eq (21)].

Since (3.2) is the more complicated problem, we discuss how the techniques shown

in Algorithm 2.2 can be extended for this problem. Starting with a uniform mesh with

five mesh points in each direction, we first apply four iterations of the MPDE, and then

a single uniform h-refinement which doubles the number of mesh intervals in each

direction. This process is repeated until the desired number of mesh points is reached.

Finally, we apply five iterations of the MPDE. (Computational experience has shown

this is sufficient; so we do not iterate until a certain tolerance is satisfied).

3.3. Numerical results

3.3.1. Reaction-diffusion equation on an irregular domain

Our first example features a reaction-diffusion problem posed on an irregular domain

−ε2∆u+ u = x for (x, y) ∈ Ω, (3.5a)



Generating Layer-Adapted Meshes Using Mesh Partial Differential Equations 17

Algorithm 3.1

Generate a two-dimensional layer-adapted mesh using an MPDE and h-refinement.

1: Input : N, the number of intervals in both directions on Ω[c].

2: Input :M, a mesh density function.

3: Set ω[c;0] := {(ξ1, ξ2)i}4i=0 to be the uniform mesh on Ω
[c]

with 5 mesh points in

each direction;

4: Set x(ξ1, ξ2) = (ξ1, ξ2) for (ξ1, ξ2) ∈ Ω
[c]
;

5: s← x;
6: for i in 0 : (log 2(N) − 3) do

7: for j in 1 : 4 do

8: set x to be the P1-FEM solution, on ω[c;i], to

∇ ·
(

M(s)∇x(ξ1, ξ2)
)

= (0, 0)T for (ξ1, ξ2) ∈ Ω[c] (3.3)

9: with boundary conditions as defined in (3.9);
10: s← x;
11: end for

12: w[c;i+1] ← refine w[c;i];
13: s← s interpolated onto w[c;i+1];
14: end for

15: for k in 1 : 5 do

16: set x to be the P1-FEM solution, on ω[c;i], to

∇ ·
(

M(s)∇x(ξ1, ξ2)
)

= (0, 0)T for (ξ1, ξ2) ∈ Ω[c] (3.4)

17: with boundary conditions as defined in (3.9);
18: s← x;
19: end for

20: Set ω := x(ω[c;i]) to be the adapted mesh on Ω;

where Ω is the polygon with vertices (0, 0), (0, 1), (1, 1) and (1, 12), and subject to the

boundary conditions

u(0, y) = u
(

x,
x

2

)

= u(x, 1) = 0,
∂u

∂x
(1, y) = 0. (3.5b)

The solution to (3.5) exhibits boundary layers, whose widths are O(ε), near y = x
2

and y = 1, as shown in Fig. 8. There are no boundary layers at x = 0 because of the

right-hand of (3.5) or at x = 1 because of the boundary conditions.

A suitable mesh for this is uniform in the x-direction, but layer-adapted in the y-

direction. For this scenario, an appropriate MPDE, for x(ξ1, ξ2) = (x, y)T , is (3.1),

where Ω[c] is the polygon with vertices (0, 0), (0, 1), (1, 1) and (1, 12 ), and apply boundary
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Figure 8: FEM solution to (3.8) with N = 32 and ε = 10−2.

conditions,

x(0, ξ2) = 0, x(1, ξ2) = 1, x

(

ξ1,
ξ1
2

)

= 2ξ2,
∂x

∂n
(ξ1, 1) = 0,

y

(

ξ1,
ξ1
2

)

=
ξ1
2
, y(ξ1, 1) = 1,

∂y

∂n
(0, ξ2) = 0,

∂y

∂n
(1, ξ2) = 0.

(3.6)

The boundary conditions on x (for example) ensure that the x-coordinate of the mesh

points are fixed at ξ1 = 0 and ξ1 = 1, while allowing them to vary along the boundary

ξ1 = 1, yet remaining on the boundary at ξ1 = 2ξ2. To solve (3.5), we generate a mesh

that is concentrated near y = x
2 and y = 1 using Algorithm 3.1. The initial mesh

ω[c,0] has the mesh points (ξ1, ξ2) = (ξ̄1,
1
2(ξ̄2(2− ξ̄1) + ξ̄1)), where (ξ̄1, ξ̄2) are the mesh

points of a uniform mesh on [0, 1]2, with N = 4 intervals in each direction. Then the

MPDE (3.1) is solved with

ρ(x) = max

{

1,K
β

ε
exp

(−β(y − x/2)
σε

)

+K
β

ε
exp

(−β(1− y)
σε

)}

, (3.7)

where K = 0.28, b = 0.99 and σ = 2.5. An example of the resulting mesh is shown

in Fig. 10. In Fig. 9, one observes that no sharp layer exists in the numerical solution

when transformed onto the computational domain Ω[c]. Fig. 11 shows the errors in the

numerical solution of (3.5); one observes that they converge linearly in N , and scale

like ε
1
2 , as per (2.8).

3.3.2. Reaction-diffusion equation with varying diffusion

We studied problems where diffusion varies on the domain, so the boundary layers vary

in width, spatially. Consequently, even when posed on a regular domain (such as a unit
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Figure 9: Contour plots of FEM solution to (3.8) with ε = 10−2 and N = 32, (a) on Ω and (b) on Ω[c].

square) optimal meshes are not tensor-product in nature. Whereas standard Bakhvalov

meshes are tensor-product, our MPDE approach has no such restriction.

Our chosen two-dimensional reaction-diffusion equation, with varying diffusion, is

−∇ ·
(

(

ε(1 + 2y)2 0
0 ε(3− 2x)2

)2

∇u(x, y)
)

+ u(x, y) (3.8a)

= (ex − 1) (ey − 1) for (x, y) ∈ Ω = (0, 1)2

with boundary conditions

u = 0 on ∂Ω. (3.8b)
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Figure 10: Mesh generated using (3.1), for (3.5), with N = 32 and ε = 10−2.
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Figure 11: Plot of ‖eh‖E for (3.5).

The solution to (3.8) exhibits layers, whose widths vary, near x = 1 and y = 1, and

a corner layer near (x, y) = (1, 1), as can be seen in Fig. 12(a).

To generate a layer-adapted mesh, that is suitable for (3.8), using an MPDE we

solve (3.2), on the domain Ω[c] = (0, 1)2, with boundary conditions,

x(0, ξ2) = 0, x(1, ξ2) = 1,
∂x

∂n
(ξ1, 0) = 0,

∂x

∂n
(ξ1, 1) = 0,

y(ξ1, 0) = 0, y(ξ1, 1) = 1,
∂y

∂n
(0, ξ2) = 0,

∂y

∂n
(1, ξ2) = 0.

(3.9)

That is, the Dirichlet boundary conditions on x (for example) ensure that the x-coordi-

nate of the mesh points are fixed at ξ1 = 0 and ξ1 = 1, while the Neumann (natural)

boundary condition allows them to vary along the boundaries at ξ2 = 0 and ξ1 = 1.
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Figure 12: Contour plots of FEM solution to (3.8) with ε = 10−2 and N = 32, (a) on Ω and (b) on Ω[c].
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Figure 13: Mesh generated using (3.2) for (3.8) with N = 32 and ε = 10−3.

Here

M(x) =









max

{

1,K1
β

ε1
exp

(

−β(1− x)
σε1

)}

0

0 max

{

1,K2
β

ε2
exp

(

−β(1− y)
σε2

)}









(3.10)

with

ε1(x, y) = ε(1 + 2y)2, ε2(x, y) = ε(3− 2x)2, β = 0.99, σ = 2.5

and K1 = K2 = 0.4.

To solve (3.8) we generated meshes that are graded near x = 1 and y = 1, in a way

that depends on the varying diffusion coefficient. To achieve this we solve (3.2) using

Algorithm 3.1 with M(x) as shown in (3.10). An example of the resulting non tensor

product mesh is shown in Fig. 13.

The errors in the numerical solutions to (3.8), are shown in Fig. 14. One observes

robust convergence, the ε
1
2N−1 term dominates when N−1 < ε

1
2 , otherwise, the N−2

term dominates.

4. Conclusions and future work

We have introduced a new “Mesh PDE” approach for constructing layer-adapted

meshes for singularly perturbed problems. For one-dimensional problems, it is equiv-

alent to a known approach for constructing Bakhvalov meshes that uses an equidis-

tribution principle along with an a priori determined monitor function. However, the

proposed method is novel in that, as we have shown, it extends to two-dimensional

problems in situations where tensor-product meshes are not appropriate.
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Figure 14: Plot of ‖eh‖E for (3.8).

The MPDE is nonlinear, and convergence of nonlinear solvers can be very slow for

small ε. To resolve this, we have presented an algorithm that uses h-refinement, and

for which the number of iterations required depends only very weakly on ε. Although

not discussed, our experiments have shown that the run-time required is independent

of ε; this is to be expected since, essentially, so too are the iterations counts.

We have reported on numerical experiments which demonstrate the accuracy of the

method. Furthermore, this paper has an expository component, in that we provide full

FEniCS implementations of the method for problems in one and two dimensions.

For the one-dimensional problems considered, the numerical results we have pre-

sented are underpinned by known theory. However, proving convergence for two-

dimensional problems would rely on detailed analysis of the solutions to (3.5) and (3.8),

which are not currently available.

In spite of this, we are confident that the approach could be successfully apply to

a wide range of problems, including those posed on more complicated domains, and

ones whose solutions feature interior layers. Specifically, we have verified our proposed

approach is effective when solving (linear) convection-diffusion problems, but omit the

details for the sake of brevity. A manuscript that considers, in detail, resolution of

different types of layers that occur in convection-diffusion problems is in preparation.

Extension of the approach to reaction-diffusion problems in three dimensions pre-

sents more of a challenge. The derivative bounds, on which our approach relies, are

available (see, e.g., [25, §3.2] and, especially, [22] for the problem on the unit cube).

Extension of the MPDE approach from 2D to 3D is more challenging. Recent work in

this direction (see, e.g., [7]) suggests it is feasible, though still quite challenging.

There are alternatives in the literature to the MPDEs we have proposed in (3.2); see,

e.g., [13]. It will be instructive to perform a detailed comparison with the alternatives.

Furthermore, we use a priori information about the solution to the physical differential

equations to formulate the MPDEs. More commonly, MPDEs are used in the context of

(a posteriori) adaptive mesh refinement. This too is under investigation.
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Our goal has been to present a strategy for applying MPDE methods for generating

meshes to problems whose solutions vary rapidly in space. We do this in the context of

singularly perturbed problems since they are of great interest in the field of numerical

analysis, and present a wide range of computational challenges. However, there are

many other problems for which graded meshes prove very successful (see, e.g., [5]),

and thus the approach we propose is likely to have more general applications.
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Appendix A. FEniCS code to solve (2.5) on a uniform mesh

## 1DRD_FEM_uniform_mesh .py

## FEniCS version : 2019.2.0. dev0

"""

Solve the singularly perturbed differential equation (SPDE)

-epsilon ^2 u" + u = f = 1-x, for x in (0,1) with u(0) = u(1) = 0

on a uniform mesh.

This code is part of

Generating layer -adapted meshes using mesh partial differential equations ,

by Róis ı́n Hill and Niall Madden . DOI : 10.17605/ OSF .IO/DPEXH

Contact : Róis ı́n Hill <Roisin .Hill@NUIGalway.ie >

"""

from fenics import *

# Define problem parameters

epsilon = 1E-2 # perturbation factor

N = 128 # mesh intervals

# Create mesh and function space with linear element on that mesh

mesh = UnitIntervalMesh(N)

V = FunctionSpace(mesh , ’P’, 1)

u = TrialFunction(V) # Trial function on V

v = TestFunction(V) # Test function on V

uN = Function (V) # Numerical solution in V

# Define the Dirichlet boundary conditions

g = Expression (’x[0]*(1 - x[0])’, degree =2)

bc = DirichletBC (V, g, ’on_boundary ’)

# Define right hand side of the SPDE , and the weak form

f = Expression (’1-x[0] ’, degree =2)

a = epsilon *epsilon *inner(grad(u), grad(v))*dx + inner(u,v)*dx

L = f*v*dx

solve(a==L, uN, bc) # Solve , applying the boundary conditions strongly
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Appendix B. A note on quadrature

FEniCS uses Gaussian quadrature as its default method, and so approximates inte-

grals by sampling the integrands at certain points in the interior of each interval. For

a boundary layer problem, the maximum value of the mesh density function will occur

at the boundary and, when ε ≪ 1, it decays rapidly away from that boundary. Con-

sequently, one should use a quadrature method, such as Gauss-Lobatto, that includes

quadrature points at mesh points. To force FEniCS to select Gauss-Lobatto quadrature,

we use a monkey patch which we incorporate in our Python code when generating

one-dimensional layer-adapted meshes.

Appendix C. FEniCS code to generate a 1D layer-adapted mesh using
an MPDE and h-refinement

This FEniCS code generates a one-dimensional layer-adapted mesh, similar to a Bakh-

valov mesh, that is appropriate for an SPDE whose solution exhibits a layer near x = 0.

A combination of solving an MPDE and h-refinement is used. Then (2.5) is solved on

the resulting mesh.

## 1D_layer_adapted_mesh_MPDE_h_refinement .py

## FEniCS version : 2019.2.0. dev0

’’’

Generate 1-sided Bakhvalov -type mesh , for a singularly perturbed ODE

whose solution has a layer near x = 0, by solving the MPDE

-(rho (x) x’(xi))’ = 0 for xi in (0,1) with x(0) = 0 and x(1) = 1,

using uniform h-refinement .

Note: selection of Gauss -Lobatto quadrature rule is executed in lines 22 -30.

This code is part of

Generating layer -adapted meshes using mesh partial differential equations ,

by Róis ı́n Hill and Niall Madden . DOI : 10.17605/ OSF .IO/DPEXH

Contact : Róis ı́n Hill <Roisin . Hill@NUIGalway.ie>

’’’

from fenics import *

import matplotlib .pyplot as plt

import math

import numpy as np

# Change quadrature rule to Gauss Lobatto

from FIAT. reference_element import *

from FIAT. quadrature import *

from FIAT. quadrature_schemes import create_quadrature

def create_GaussLobatto_quadrature (ref_el , degree , scheme ="default "):

if degree < 3: degree = 3

return GaussLobattoLegendreQuadratureLineRule (ref_el , degree )

import FIAT

FIAT.create_quadrature = create_GaussLobatto_quadrature

# Problem parameters

epsilon = 1E-6 # perturbation factor of the physical PDE

N = 32 # mesh intervals in final mesh
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# parameters for rho (x)

sigma = 2.5 # related to degree of elements

b = 0.99 # lower bound on reaction coefficient

q = 0.5 # proportion of mesh points in layer

K = q/( sigma *(1-q))

# Parameters for h-refinement steps

N_start = 4 # initial number of mesh intervals

step_index = 0 # initial step number

N_steps = 2** np.arange (round (math.log(N_start ,2)),int (math.log (N,2)))

f = Expression (’0.0 ’, degree =2) # Right -and side of MPDE

x_0 = Expression (’x[0] ’, degree =2) # Initial solution

residual_norm_TOL = 0.4 # Stopping criterion tolerance

residual_norm = residual_norm_TOL +1

# Lists for meshes and computational function spaces

mesh_list = []

V_list = []

list_length = (N_steps .size +1)

for i in range (0, list_length ):

mesh_list .append ("mesh%2d" %(i))

V_list .append ("V2D %2d" %(i))

# Computactional function space parameters

def comp_space (N):

meshc = UnitIntervalMesh(N)

V = FunctionSpace(meshc , ’P’, 1) # Function space with P1 -elements

v = TestFunction(V) # Test function on V

x = TrialFunction(V) # Trial function on V

return meshc , V, v, x

# FEM problem for the MPDE

def MPDE_FEM (rho , xN, x, v, f, meshz , V):

bc = DirichletBC (V, x_0 , ’on_boundary ’) # Dirichlet boundary condition

a = rho(xN)*inner (grad(x),grad(v))*dx(meshz ) # Left side of weak form

L = f*v*dx # Right side of weak form

xN = Function (V) # Numerical solution in V

solve (a==L, xN , bc) # Solve , applying the BCs strongly

return xN

# Define rho (x) for MPDE

def rho(xN):

return conditional ((K*(b/epsilon )*exp (-b*xN/( sigma*epsilon ))) >1.0, \

K*(b/epsilon )*exp (-b*xN/( sigma*epsilon )), 1.0)

# The norm of the residual to use as stopping criterion

def calc_residual(rho , V, meshN):

residual = assemble ((rho(xN)*xN.dx(0) *v.dx(0))*dx) # residual of xN

bcr = DirichletBC (V, ’0.0 ’, ’on_boundary ’)

bcr.apply(residual ) # apply Dirichlet BCs

residual_func = Function (V)

residual_func.vector ()[:] = residual .get_local () # Residual fn on V

residual_norm = norm(residual_func , ’L2’, meshN) # L2-norm of residual

return residual_norm

# Initial function space parameters

mesh_list [0], V_list [0], v, x = comp_space (N_start )

xN = interpolate (x_0 , V_list [0]) # Initial value for xN
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# Iterate through uniform h-refinements

for N_step in N_steps :

for i in range (0,3): # Calculate solution three times on each mesh size

xN = MPDE_FEM (rho , xN , x, v, f, mesh_list [ step_index ], \

V_list [step_index ])

step_index = round(math.log(N_step *2/ N_start ,2) )

# Generate computational function space on the finer mesh

mesh_list [step_index ], V_list [step_index ], v, x = comp_space (N_step *2)

# Interpolate the solution onto the new computational function space

xN = interpolate (xN , V_list [step_index ])

# Calculate solution and L2 norm of the residual on final function space

while residual_norm > residual_norm_TOL:

xN = MPDE_FEM (rho , xN , x, v, f, mesh_list [step_index ], V_list [step_index ])

residual_norm = calc_residual(rho , V_list [step_index ], \

mesh_list [step_index ])

# Generate the physical mesh

meshp = UnitIntervalMesh(N)

meshp.coordinates ()[:,0] = xN.compute_vertex_values () [:]

# DEFINE REACTION -DIFFUSION PROBLEM TO SOLVE ON MESH GENERATED

# Solve -epsilon ^2 u" + u = 1-x for x in (0,1) with u(0) = u(1) = 0

# Physical function space parameters

Vp = FunctionSpace(meshp , ’P’, 1) # Function space with P1-elements

vp = TestFunction(Vp) # Test function on V

u = TrialFunction(Vp) # Trial function on V

gp = Expression (’x[0]*(1 - x[0])’, degree =2) # Boundary values

bcp = DirichletBC (Vp , gp, ’on_boundary ’) # Dirichlet boundary conditions

fp = Expression (’1.0-x[0] ’, degree =2) # RHS of PDE

# FEM problem for the reaction -diffusion equation

a = epsilon *epsilon *dot(grad(u), grad(vp))*dx + u*vp*dx

L = fp*vp*dx

uN = Function (Vp)

solve(a==L, uN , bcp)

plot(uN), plt .show ()

Appendix D. FEniCS code to generate a 2D layer-adapted mesh using
an MPDE and h-refinement

This FEniCS code generates a two-dimensional layer-adapted mesh for an SPDE

whose diffusion varies spatially and has layer regions near x = 1 and y = 1 using

a combination of MPDE and h-refinement.

## 2D_layer_adapted_mesh_MPDE_h_refinement .py

## FEniCS version : 2019.2.0. dev0

’’’

Generate a non -tensor product layer adapted mesh , for a singularly

perturbed PDE whose solution has layers that vary spatially near x = 1

and y = 1, and meet at (1,1) , by solving the MPDE

-grad(M(x) grad(x(xi1 , xi2 ))) = (0,0) ^T for (xi1 ,xi2 ) in (0,1) ^2

where x is a vector , with

x(0, xi2 ) = (0, x_xi2 =0) , x(1, xi2 ) = (1, x_xi2 =0) ,
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x(xi1 ,0) = (x_xi1 =0,0) , x(xi1 ,1) = (x_xi1 =0,1) ,

and using uniform h-refinements .

This code is part of

Generating layer -adapted meshes using mesh partial differential equations ,

by Róis ı́n Hill and Niall Madden . DOI : 10.17605/ OSF .IO/DPEXH

Contact : Róis ı́n Hill <Roisin .Hill@NUIGalway.ie >

’’’

from fenics import *

import math

import numpy as np

# Problem parameters

epsilon = 1E-2 # perturbation factor of the physical PDE

N = 32 # N+1 mesh points in each direction in final mesh

# Parameters for h refinement steps

N_start = 4 # initial mesh size

step_index = 0 # initial step number

N_steps = 2** np.arange (round (math.log(N_start ,2)),int (math.log (N,2)))

# Parameters for M(x)

sigma = 2.5 # dependant on method , often degree of elements +1 or +1.5

b = 0.99 # lower bound on reaction term

q = 0.5 # proportion of mesh points in layer

K = q/( sigma *(1-q))

f = Expression ((’0.0 ’,’0.0 ’), degree =2) # Right -hand side of MPDE

# Lists for meshes and computational function spaces

mesh_list = []

V_list = []

list_length = int (math.log(N/N_start ,2) +1)

for i in range (0, list_length ):

mesh_list .append ("mesh%2d" %(i))

V_list .append ("V2D %2d" %(i))

# generate computational function space

def comp_space (N):

mesh = UnitSquareMesh(N, N, diagonal =’crossed ’) # uniform mesh on (0,1) ^2

V = VectorFunctionSpace (mesh , ’P’, 1) # Function space V with P1 elements

v = TestFunction(V) # Test function on V

x = TrialFunction(V) # Trial function on V

return mesh , V, v, x

# Define boundaries

TOL = 1E-14

def left_boundary( x, on_boundary ):

return abs (x[0]) < TOL

def right_boundary(x, on_boundary ):

return abs (1-x[0]) < TOL

def bottom_boundary( x, on_boundary ):

return abs (x[1]) < TOL

def top_boundary( x, on_boundary ):

return abs (1-x[1]) < TOL

# Define Dirichlet boundary conditions

def boundary_conditions(V):

bcl = DirichletBC (V.sub (0) , ’0.0 ’, left_boundary)

bcr = DirichletBC (V.sub (0) , ’1.0 ’, right_boundary)
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bcb = DirichletBC (V.sub (1) , ’0.0 ’, bottom_boundary)

bct = DirichletBC (V.sub (1) , ’1.0 ’, top_boundary)

bcs = [bcl , bcr , bcb , bct]

return bcs

# Define the matrix M(x) for MPDE

def M(xN):

epsilon_y = Expression (’epsilon *(1+xi1 )*(1+ xi1 )’,\

epsilon =epsilon , xi1=xN.sub (0) , degree =2)

epsilon_x = Expression (’epsilon *(2-xi2 )*(2- xi2 )’,\

epsilon =epsilon , xi2=xN.sub (1) , degree =2)

M = Expression ((( ’K*(b/epsilon_x )*exp (-b*(1-xi1 )/(sigma *epsilon_x ))>1 ? K*(b

/epsilon_x )*exp (-b*(1- xi1 )/( sigma*epsilon_x )) : 1’,’0’),\

(’0’,’K*(b/epsilon_y )*exp (-b*(1-xi2 )/(sigma *epsilon_y ))>1 ? K*(b/

epsilon_y )*exp (-b*(1- xi2 )/( sigma*epsilon_y )) :1’)) ,\

K=K, b=b, sigma=sigma , epsilon_x =epsilon_x , epsilon_y =epsilon_y ,\

xi1=xN.sub (0) , xi2=xN.sub (1) , degree =4)

return M

# Define the FEM problem for the MPDE

def MPDE_FEM (M, xN, x, v, f, bcs , meshz , V):

a = inner (M(xN)*grad(x), grad(v))*dx(meshz) # Left side of weak form

L = dot(f,v)*dx # Right side of weak form

xN = Function (V) # Numerical solution in V

solve(a==L, xN, bcs) # Solve , applying the DirichletBC strongly

return xN

# Initial function space parameters

mesh_list [0], V_list [0], v, x = comp_space (N_start )

# Set intial value for xN: xN(xi1 , xi2 ) = (xi1 , xi2 )

a = inner(grad(x),grad(v))*dx

L = dot (f,v)*dx

xN = Function (V_list [0])

solve(a==L, xN , boundary_conditions(V_list [0]))

# Iterate through uniform h-refinements

for N_step in N_steps :

for i in range (0,4): # Solve MPDE 4 times on each mesh size

xN = MPDE_FEM (M, xN , x, v, f, boundary_conditions (V_list [step_index ]),

mesh_list [step_index ], V_list [step_index ])

step_index = round(math.log(N_step *2/ N_start ,2) )

# Generate computational function space on the finer mesh

mesh_list [step_index ], V_list [step_index ], v, x = comp_space (N_step *2)

# Interpolate solution onto the new computational function space

xN = interpolate (xN ,V_list [step_index ])

# Calculate solution in final function space

for i in range (0,5):

xN = MPDE_FEM (M, xN , x, v, f, boundary_conditions(V_list [step_index ]),

mesh_list [step_index ], V_list [step_index ])

# Generate the physical mesh

xiX , xiY = xN.split (True)

meshp = UnitSquareMesh(N,N)

meshp.coordinates ()[:,0] = xiX .compute_vertex_values () [0:(N+1) *(N+1) ]

meshp.coordinates ()[:,1] = xiY .compute_vertex_values () [0:(N+1) *(N+1) ]
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