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Abstract. In this paper, a robust modified weak Galerkin (MWG) finite element

method for reaction-diffusion equations is proposed and investigated. An advantage
of this method is that it can deal with the singularly perturbed reaction-diffusion

equations. Another advantage of this method is that it produces fewer degrees of
freedom than the traditional WG method by eliminating the element boundaries

freedom. It is worth pointing out that, in our method, the test functions space is the

same as the finite element space, which is helpful for the error analysis. Optimal-
order error estimates are established for the corresponding numerical approximation

in various norms. Some numerical results are reported to confirm the theory.
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1. Introduction

The weak Galerkin (WG) finite element method is a numerical technique for solv-

ing partial differential equations. Since it has been proposed by Wang [28], the WG

method has been applied successfully to the discretization of several classes of par-

tial differential equations and variational inequalities, e.g., second-order elliptic prob-

lems [2–5,8,9,11,16,19,29,31], the Stokes equations [25,30,33,34], the Biharmonic

equations [18, 21, 27, 35], the Maxwell equations [22], the Oseen equations [15], the
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Helmholtz equations [20, 23], the multi-term time-fractional diffusion equations [36],

the parabolic integro-differential equations [37], the interface problems [17, 24], the

natural convection problems [6], and the elliptic variational inequality [26].

It is known that the weak function defined in the WG method has the form v =
{v0, vb} with v = v0 inside of the element and v = vb on the boundary of the element.

The introduction of the weak function and the corresponding weak derivative makes

the WG method highly flexible. However, it creates additional degrees of freedom asso-

ciated vb. In order to eliminate the unknowns associated with the element boundaries,

Wang [31] and Gao [5] modified the WG method for second-order elliptic problems

by replacing vb with the average of v0 : {v0}. It means that the weak function in the

modified weak Galerkin (MWG) method has the form v = {v0, {v0}}. Therefore, the

MWG method has fewer unknowns than the traditional WG method. In [5, 31], the

finite element space for second-order elliptic problems is defined by

Vh :=
{
v : v|T ∈ Pk(T ) for T ∈ Th

}
, (1.1)

and the test function space by

V 0
h :=

{
v : v ∈ Vh, v|e = 0 for e ∈ ∂Ω

}
.

However, the error eh = uh −Q0u between the MWG solution and the L2 projection of

the exact solution does not necessarily belong to the test function space V 0
h . This will

make it difficult to analyse the error.

In this paper, we consider the following diffusion-reaction equations which seeks an

unknown function u = u(xxx) satisfying

−∇ · (A∇u) + cu = f in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where Ω is a polygonal/plolyhedral domain in Rd (d = 2, 3), A is a symmetric matrix,

and c = c(xxx) ∈ L∞(Ω) is a scalar positive function on Ω. Assume that the matrix A
satisfies the following property: there exists a constant λ > 0 such that

ξtAξ ≥ λξtξ, ∀ξ ∈ Rd, (1.4)

where ξ is understood as a column vector and ξt is the transpose of ξ.
Letting A = ε, where ε is a constant coefficient and 0 < ε≪ 1, one can rewrite the

problem (1.2)-(1.3) by the following singularly perturbed reaction-diffusion equations:

seek an unknown function u = u(xxx) such that

−ε∆u+ cu = f in Ω, (1.5)

u = 0 on ∂Ω. (1.6)

It is well-known that standard finite element methods often suffer from the deterio-

ration of numerical accuracy for convection-dominated problems. A lot of research has
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been devoted to solving such kinds of problems properly, such as equilibrated residual

method [1], anisotropic tetrahedral meshes method [7], discontinuous finite element

methods [10], discontinuous Galerkin least-squares finite element methods [12,13].

The goal of this paper is to present a new modified weak Galerkin (MWG) finite

method for (1.2)-(1.3). In this MWG method, a difference from the method in [5, 31]

is that the test functions space is the same as the finite element space. That is, Vh
defined by (1.1) is not only the finite element space but also the test functions space.

This is helpful for the error analysis since the error eh = uh −Q0u belongs to Vh. It is

worth pointing out that the MWG method is accurate and stable even when the solved

equations are the singularly perturbed reaction-diffusion equations (1.5)-(1.6).

The rest of the paper is organized as follows. In Section 2, we introduce some pre-

liminaries and notations for Sobolev spaces. In Section 3, we establish a new MWG

finite element scheme for the Eqs. (1.2)-(1.3). In Section 4, we give the error equation.

In Section 5, we present some technical estimates which are useful for the error anal-

ysis. In Section 6, we derive optimal-order error estimates for MWG approximation in

both H1 and L2 norms. In Section 7, we present some numerical results which confirm

the theory developed in earlier sections. Finally, conclusions are drawn in Section 8.

2. Preliminaries and notations

Let K be any domain in Rd, d = 2, 3. We use the standard definition for the Sobolev

spaceHs(K) and their associated inner products (·, ·)s,K , norms ‖·‖s,K , and seminorms

| · |s,K for any s ≥ 0. For instance, for any integer s ≥ 0, the seminorm | · |s,K is defined

by

|v|s,K =

(
∑

|α|=s

∫

K

|∂αv|2dK

) 1

2

with the usual notation

α = (α1, · · ·, αd), |α| = α1 + · · ·+ αd, ∂α =

d∏

j=1

∂
αj
xj .

The Sobolev norm ‖ · ‖m,K is given by

‖v‖m,K =

(
m∑

j=0

|v|2j,K

)1

2

.

The space H0(K) coincides with L2(K), for which norm and inner product are

denoted by ‖ · ‖K and (·, ·)K , respectively. If K = Ω, we shall drop the subscript K in

the L2 norm and the L2 inner product notations.

The space H(div;K) is given by the set of vector-valued functions on K which,

together with their divergence, are square integrable, i.e.,

H(div;K) :=
{
vvv : vvv ∈

[
L2(K)

]d
,∇ · vvv ∈ L2(K)

}
.
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The norm in H(div;K) is defined as

‖vvv‖H(div;K) =
(
‖vvv‖2K + ‖∇ · vvv‖2K

) 1

2 .

3. Modified weak Galerkin finite element schemes

Let Th be a partition of the domain Ω with mesh h that consists of arbitrary poly-

gons/polyhedra. Assume that the partition Th is WG shape regular defined by a set of

conditions as detailed in [14, 29]. Denote by Eh the set of all edges/faces in Th, and

E0
h = Eh/∂Ω the set of all interior edges/faces in Th.

In the weak Galerkin finite element method, the finite dimensional space is defined

as

Vh :=
{
v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk(e), e ⊂ ∂T, T ∈ Th

}
,

where k ≥ 1. We would like to emphasize that any function v ∈ Vh has a single value

vb on each edge e ∈ Eh. Denote by V0
h the subspace of Vh consisting of discrete weak

function with vanishing boundary value, i.e.,

V0
h :=

{
v = {v0, vb} ∈ Vh, vb = 0 on ∂Ω

}
.

The modified weak Galerkin method will eliminate vb from Vh. Thus the finite element

space in the MWG formulation is defined as

Vh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th

}
,

where k ≥ 1. We also defined a vector valued polynomial space Wh as

Wh :=
{
qqq ∈

[
L2(Ω)

]2
: qqq|T ∈

[
Pk−1(T )

]2
, ∀T ∈ Th

}
,

where k ≥ 1.

In order to build a bridge between Vh and Vh, we need to introduce the average

and the jump of the function v. For any interior edge/faces e ∈ E0
h, let T1, T2 be two

elements sharing e and n1n1n1 and n2n2n2 be the unit outward normal vectors on e, associated

with T1 and T2, respectively. For scalar-function v and vector-function qqq, we define

their average {·} and jump [[·]] on e ∈ Eh by

{v} =





1

2
(v |T1

+v |T2
), e ∈ E0

h,

0, e ∈ ∂Ω,
[[v]] =

{
v |T1

n1n1n1 + v |T2
n2n2n2, e ∈ E0

h,

vnnn, e ∈ ∂Ω,

{qqq} =





1

2
(qqq |T1

+qqq |T2
), e ∈ E0

h,

0, e ∈ ∂Ω,
[[qqq]] =

{
qqq |T1

·n1n1n1 + qqq |T2
·n2n2n2, e ∈ E0

h,

qqq · nnn, e ∈ ∂Ω.

Thus, Vh can be viewed as a subspace of V0
h by the embedding operator: v → {v, {v}}.
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Lemma 3.1. Let φ, www be a scalar-function and a vector-function, respectively. If they are

regular enough to make all involving terms well-defined, then,

∑

T∈Th

〈
www ·nnn, φ− {φ}

〉
∂T

=
∑

e∈E0

h

〈
{www}, [[φ]]

〉
e
+
∑

e∈∂Ω

〈www · nnn, φ〉e. (3.1)

Proof. For e ∈ E0
h, let T1 and T2 be two elements sharing e in common. Applying the

definition of {·} and [[·]], we have

〈
www|T1

·n1n1n1, φ|T1

〉
∂T1

+
〈
www|T2

· n2n2n2, , φ|T2

〉
∂T2

=

〈
www|T1

·n1n1n1 +www|T2
· n2n2n2,

1

2
φ|T1

〉

∂T1

+

〈
www|T1

·n1n1n1 +www|T2
· n2,

1

2
φ|T2

〉

∂T2

+

〈
www|T1

·n1n1n1,
1

2
φ|T1

〉

∂T1

+

〈
www|T2

· n2n2n2,
1

2
φ|T2

〉

∂T2

−

〈
www|T2

·n2n2n2,
1

2
φ|T1

〉

∂T1

−

〈
www|T1

· n1n1n1,
1

2
φ|T2

〉

∂T2

=
〈
[[www]], {φ}

〉
e
+

〈
1

2
www|T1

+
1

2
www|T2

, φ|T1
n1

〉

∂T1

+

〈
1

2
www|T1

+
1

2
www|T2

, φ|T1
n2n2n2

〉

∂T2

=
〈
[[www]], {φ}

〉
e
+
〈
{www}, [[φ]]

〉
e
.

Thus,

〈
www|T1

·n1n1n1, φ|T1

〉
∂T1

+
〈
www|T2

·n2n2n2, , φ|T2

〉
∂T2

−
〈
[[www]], {φ}

〉
e
=
〈
{www}, [[φ]]

〉
e
,

which yields the identity (3.1).

The discrete weak gradient operator on Vh is defined in the following sense.

Definition 3.1 ([28]). For each v = {v0, vb} ∈ Vh, the discrete weak gradient oper-

ator of v, denoted by ∇̃w, is defined as the unique piecewise polynomial ∇̃wv ∈ Wh

satisfying the following equation:

(∇̃wv,qqq)T = −(v0,∇ · qqq)T + 〈vb, qqq ·nnn〉∂T , ∀qqq ∈Wh, (3.2)

where nnn is the unit outward normal to ∂T .

By applying the usual integration by part to the first term on the right hand side of

(3.2), we can rewrite the Eq. (3.2) as

(∇̃wv,qqq)T = (∇v0, qqq)T − 〈v0 − vb, qqq ·nnn〉∂T , ∀qqq ∈Wh. (3.3)

We give the definition of the discrete weak gradient operator on Vh in the following

sense.
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Definition 3.2. For each v ∈ Vh, the discrete weak gradient operator of v, denoted by

∇w, is defined as the unique piecewise polynomial ∇wv ∈ Wh satisfying the following

equation:

(∇wv,qqq)T = −(v,∇ · qqq)T +
〈
{v}, qqq · nnn

〉
∂T
, ∀qqq ∈Wh, (3.4)

where nnn is the unit outward normal to ∂T .

By applying the usual integration by part to the first term on the right hand side of

(3.4), we can rewrite the Eq. (3.4) as

(∇wv,qqq)K = (∇v,qqq)T −
〈
v − {v}, qqq · nnn

〉
∂T
, ∀qqq ∈Wh. (3.5)

Let Q0 be the local L2 projection on Th and Qb be the local L2 projection on Eh.

Thus, Q0|T is the L2 projection from L2(T ) onto Pk(T ) and Qb|e is the L2 projection

from L2(e) onto Pk(e). For any v ∈ H1(Ω), we define the projection operator Qh :
H1(Ω) → Vh

Qhv = {Q0v,Qbv}.

In addition, denote by Qh the local L2 projection onto [Pk−1(T )]
d. The following lemma

presents a useful property which indicates the discrete weak gradient operator is good

approximation to the gradient operator in the classical sense.

Lemma 3.2 ([28]). The L2-projection Qh and Qh have the following commutative prop-

erty:

∇̃w(Qhφ) = Qh(∇φ), ∀φ ∈ H1(T ). (3.6)

Now we introduce two forms on Vh as follows:

a(v,w) = (A∇wv,∇ww) + (v,w),

s(v,w) = ρ
∑

e∈Eh

h−1
〈
[[v]], [[w]]

〉
e
,

where

(A∇wv,∇ww) =
∑

T∈Th

(A∇wv,∇ww)T , (v,w) =
∑

T∈Th

(v,w)T ,

ρ can be any positive number. In practical computation, one might set ρ = 1. Denote

by as(·, ·) a stabilization of a(·, ·) given by

as(v,w) = a(v,w) + s(v,w). (3.7)

Algorithm 3.1

A numerical approximation for the equations (1.2)-(1.3) can be obtained by seeking

uh ∈ Vh satisfying the following equation:

as(uh, v) = (f, v), ∀v ∈ Vh. (3.8)
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We can see from (3.8) that the MWG and the IPDG [32] have the same type of

discrete spaces. However, comparing with IPDG method, there is no need to choose

the penalty factor in the MWG method. By (1.4) and the symmetry of A, it is easy to

get that the system (3.8) is positive semi-definite for any parameter value of ρ > 0.

Next, we justify the well-postedness of the scheme (3.8). For any v ∈ Vh, let

|||v||| :=
√
as(v, v). (3.9)

It is not hard to see that ||| · ||| defines a semi-norm in the finite element space Vh.

Moreover, we have the following lemma.

Lemma 3.3. ||| · ||| defines a norm on Vh.

Proof. It suffices to check the positivity property for ||| · |||. To this end, we need check

that for v ∈ Vh, v = 0 if |||v||| = 0. In fact, |||v||| = 0 implies that ∇wv = 0 on each

element T and [[v]] = 0 on each edge e ∈ Eh. From [[v]] = 0, it is easy to obtain that v
is continuous on Ω and v = 0 on ∂Ω. It follows from ∇wv = 0 and the Eqs. (3.5) and

(3.1) that for any qqq ∈ [Pk−1(T )]
d,

0 =
∑

T∈Th

(∇wv,qqq)T =
∑

T∈Th

(∇v,qqq)T −
∑

T∈Th

〈
v − {v}, qqq ·nnn

〉
∂T

=
∑

T∈Th

(∇v,qqq)T −
∑

T∈E0

h

〈
[[v]], {qqq}

〉
e
−
∑

e∈∂Ω

〈
[[v]], qqq

〉
e
= (∇v,qqq)T .

Letting qqq = ∇v in the equation above yields ∇v = 0 on T ∈ Th. Thus, v is a constant

on each element T . This, together with the fact that v is continuous on Ω and v = 0 on

∂Ω, implies that v = 0 on Ω.

Lemma 3.4. The weak Galerkin finite element scheme (3.8) has a unique solution.

Proof. Let u
(1)
h and u

(2)
h be two solutions of (3.8). It is clear that the difference

wh = u
(1)
h − u

(2)
h is a finite element function in Vh satisfying

as(wh, v) = 0, ∀v ∈ Vh. (3.10)

By setting v = wh in (3.10) we obtain

|||wh|||
2 = as(wh, wh) = 0.

It follows that wh ≡ 0, or equivalently u
(1)
h = u

(2)
h , which completes the proof.
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4. Error equations

The goal of this section is to establish the error equation which can be used to derive

the following error estimates for the MWG finite element solution. Let uh ∈ Vh be the

MWG finite element solution arising from the numerical scheme (3.8). Assume that

the exact solution of the Eqs. (1.2)-(1.3) is given by u. Let

eh = uh −Q0u (4.1)

be the error between the MWG finite element solution and the L2 projection of the

exact solution.

Lemma 4.1. Let eh be the error defined by (4.1). Then, for any v ∈ Vh, one has

as(eh, v) =
(
A∇̃w(Qhu)−A∇w(Q0u),∇wv

)
+ c(u−Q0u, v)

−
∑

T∈Th

〈
(A∇u−AQh(∇u)) · nnn, v − {v}

〉
∂T

− s(Q0u, v). (4.2)

Proof. Testing (1.2) by using v ∈ Vh, we arrive at

(f, v) = (A∇u,∇v) + c(u, v) −
∑

T∈Th

〈
(A∇u) ·nnn, v − {v}

〉
∂T
, (4.3)

where we have used the fact that
∑

T∈Th

〈
(A∇u) ·nnn, {v}

〉
∂T

= 0.

For w ∈ Vh, it follows from (3.3) and (3.6) that

(
A∇̃w(Qhu), ∇̃ww

)
=
(
AQh(∇u), ∇̃ww

)

=
(
∇w0,AQh(∇u)

)
−
∑

T∈Th

〈
w0 − wb, (AQh(∇u)) ·nnn)

〉
∂T

= (A∇u,∇w0)−
∑

T∈Th

〈
(AQh(∇u)) · nnn,w0 −wb

〉
∂T
.

Notice that for any v ∈ Vh, we have {v, {v}} ∈ Vh. Thus, we obtain

(A∇u,∇v) =
(
A∇̃w(Qhu),∇wv

)
+
∑

T∈Th

〈
(AQh(∇u)) · nnn, v − {v}

〉
∂T
. (4.4)

By (4.3) and (4.4), we obtain

(f, v) =
(
A∇̃w(Qhu),∇wv

)
T
+ c(u, v)

−
∑

T∈Th

〈
(A∇u−AQh(∇u)) ·nnn, v − {v}

〉
∂T
. (4.5)
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By the definition of a(·, ·), we can get

a(Q0u, v) =
(
A∇w(Q0u),∇wv

)
+ c(Q0u, v). (4.6)

According to (3.8) and the definition of eh, we can get

as(eh, v) = as(uh, v)− as(Q0u, v) = (f, v)− a(Q0u, v)− s(Q0u, v). (4.7)

Combining (4.5)-(4.7), we obtain

as(eh, v) =
(
A∇̃w(Qhu),∇wv

)
−
(
A∇w(Q0u),∇wv

)
+ c(u−Q0u, v)

−
∑

T∈Th

〈
(A∇u−AQh(∇u)) · nnn, v − {v}

〉
∂T

− s(Q0u, v),

which completes the proof.

5. Some technical estimates

In this section, we shall present some technical results useful for the forthcoming

error analysis. To this end, we firstly introduce the trace inequality and inverse in-

equality on WG shape regular partitions. For more details we refer the reader to [29].

For simplicity of notation, we shall use . denote less than or equal to up to a con-

stant independent of the mesh size, variables, or other parameters appearing in the

inequality.

Lemma 5.1 ([29]). Let Th be a finite element partition of Ω that is WG shape regular.

Then, there exists a constant C such that for any T ∈ Th and edge/face e ∈ ∂T , we have

‖ϕ‖2e ≤ C
(
h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖

2
T

)
, (5.1)

where ϕ ∈ H1(T ) is any function.

Lemma 5.2 ([29]). Let Th be a finite element partition of Ω that is WG shape regular.

Then, there exists a constant C(n) such that

‖∇ϕ‖T ≤ C(n)h−1
T ‖ϕ‖T , ∀T ∈ Th (5.2)

for any piecewise polynomial ϕ of degree n on Th.

The following lemma provides estimates for the projection operators Q0 and Qh.

Lemma 5.3 ([19,29]). Let Th be a finite element partition of Ω that is WG shape regular.

Then, for any φ ∈ Hk+1(Ω), one has

∑

T∈Th

‖φ−Q0φ‖
2
T . h2(k+1)‖φ‖2k+1, (5.3)
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∑

T∈Th

‖∇(φ−Q0φ)‖
2
T . h2k‖φ‖2k+1, (5.4)

∑

T∈Th

‖∇φ−Qh(∇φ)‖
2
T . h2k‖φ‖2k+1, (5.5)

∑

T∈Th

(
‖φ−Q0φ‖

2
T + h2T ‖∇(φ−Q0φ)‖

2
T

)
. h2(k+1)‖φ‖2k+1. (5.6)

By using the trace inequality (5.1) and Lemma 5.3, one can obtain the following

lemma.

Lemma 5.4 ([9]). Let Th be a finite element partition of Ω that is WG shape regular.

Then, for any φ ∈ Hk+1(Ω), one obtains
∑

T∈Th

‖φ−Q0φ‖
2
∂T . h2k+1‖φ‖2k+1. (5.7)

Lemma 5.5. Let Th be a finite element partition of Ω that is WG shape regular. Then, for

any w ∈ Hk+1
0 (Ω), one obtains

∑

T∈Th

‖∇̃w(Qhw)−∇w(Q0w)‖
2
T . h2k‖w‖2k+1. (5.8)

Proof. For qqq ∈Wh and T ∈ Th, by (3.2), (3.4) and (5.1)-(5.2), we obtain
∣∣(∇̃w(Qhw)−∇w(Q0w), qqq

)
T

∣∣

=
∣∣〈Qbw − {Q0w}, qqq ·nnn〉∂T

∣∣
=
∣∣〈Qbw − w + {w −Q0w}, qqq · nnn〉∂T

∣∣
≤
(
‖Qbw − w‖∂T + ‖{w −Q0w}‖∂T

)
‖qqq‖∂T

. h−
1

2

(
‖Q0w − w‖∂T + ‖{w −Q0w}‖∂T

)
‖qqq‖T . (5.9)

Letting qqq = ∇̃w(Qhw)−∇w(Q0w) in (5.9), we obtain

∥∥∇̃w(Qhw)−∇w(Q0w)
∥∥
T
. h−

1

2

(
‖Q0w − w‖∂T + ‖{w −Q0w}‖∂T

)
.

Thus, by (5.7), we have
∑

T∈Th

‖∇w(Qhw)−∇w(Q0w)‖
2
T

.
∑

T∈Th

h−1
(
‖Q0w − w‖∂T + ‖{w −Q0w}‖∂T

)2

.
∑

T∈Th

h−1
(
‖Q0w − w‖∂T

)2

. h2k‖w‖2k+1,

which completes the proof.
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Lemma 5.6. Let Th be a finite element partition of Ω that is WG shape regular. Then, for

any w ∈ Hk+1
0 (Ω) and v ∈ Vh, one has
∣∣∣h−1

∑

e∈Eh

〈[[Q0w]], [[v]]〉
∣∣∣ . hk|||v|||‖w‖k+1, (5.10)

∣∣∣
(
A∇̃w(Qhw)−A∇wQ0w,∇wv

)∣∣∣ . hk|||v|||‖w‖k+1, (5.11)
∣∣∣∣
∑

T∈Th

〈
(A∇w −AQh(∇w)) ·nnn, v − {v}

〉
∂T

∣∣∣∣ . hk+1|||v|||‖w‖k+1. (5.12)

Proof. By (5.7) and the fact that [[w]] = 0, we can get
∣∣∣∣h

−1
∑

e∈Eh

〈
[[Q0w]], [[v]]

〉∣∣∣∣ =
∣∣∣∣h

−1
∑

e∈Eh

〈
[[Q0w − w]], [[v]]

〉∣∣∣∣

≤ h−1

(∑

e∈Eh

∥∥[[Q0w − w]]
∥∥2
e

) 1

2

(∑

e∈Eh

∥∥[[v]]
∥∥2
e

) 1

2

. h−1

( ∑

T∈Th

‖Q0w − w‖2∂T

) 1

2

(∑

e∈Eh

∥∥[[v]]
∥∥2
e

) 1

2

=

(
h−1

∑

T∈Th

‖Q0w − w‖2∂T

) 1

2

(∑

e∈Eh

h−1
∥∥[[v]]

∥∥2
e

) 1

2

. hk‖w‖k+1|||v|||,

which verifies the inequality (5.10).

By (3.9) and (5.8), one can derive
∣∣∣
(
A∇̃w(Qhw)−A∇wQ0w,∇wv

)∣∣∣

≤

( ∑

T∈Th

‖A∇w(Qhw)−A∇wQ0w‖
2

) 1

2

( ∑

T∈Th

‖∇wv‖
2

) 1

2

. hk‖w‖k+1|||v|||,

which completes the proof of the inequality (5.11). By (3.1) and (5.5), we obtain
∣∣∣∣
∑

T∈Th

〈
(A∇w −AQh(∇w)) · nnn, v − {v}

〉
∂T

∣∣∣∣

=

∣∣∣∣
∑

e∈E0

h

〈
{A∇w −AQh(∇w)}, [[v]])

〉
e
+
∑

e∈∂Ω

〈
A∇w −AQh(∇w), [[v]])

〉
e

∣∣∣∣

.

( ∑

T∈Th

h‖A∇w −AQh(∇w)‖
2
∂T

) 1

2

(∑

e∈Eh

h−1
∥∥[[v]]

∥∥2
e

) 1

2

. hk+1|||v|||‖w‖k+1.
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This completes the proof of the inequality (5.12), and hence the lemma.

In the finite element space Vh, we define the semi-norm ‖ · ‖1,h by

‖v‖1,h =

( ∑

T∈Th

‖∇v‖2T +
∑

e∈Eh

h−1
∥∥[[v]]

∥∥2
e

) 1

2

. (5.13)

Lemma 5.7. For any v ∈ Vh, we have

‖v‖1,h . |||v|||. (5.14)

Proof. For any v ∈ Vh, it follows from (3.5) that

(∇wv,qqq)T = (∇v,qqq)T −
〈
v − {v}, qqq ·nnn

〉
∂T
, ∀qqq ∈Wh. (5.15)

By setting qqq = ∇v in (5.15), we obtain

(∇wv,∇v)T = (∇v,∇v)T −
〈
v − {v},∇v ·nnn

〉
∂T
.

Thus,

∑

T∈Th

(∇wv,∇v)T =
∑

T∈Th

(∇v,∇v)T +
∑

e∈E0

h

〈
[[v]], {∇v}

〉
e
+
∑

e∈∂Ω

〈
[[v]],∇v

〉
e
.

By the trace inequality (5.1) and inverse inequality (5.2), we have

∑

T∈Th

‖∇v‖2T

.

( ∑

T∈Th

‖∇wv‖
2
T

) 1

2

( ∑

T∈Th

‖∇v‖2T

) 1

2

+

(∑

e∈Eh

∥∥[[v]]
∥∥2
e

) 1

2

( ∑

T∈Th

‖∇v‖2∂T

) 1

2

.

( ∑

T∈Th

‖∇wv‖
2
T

) 1

2

( ∑

T∈Th

‖∇v‖2T

) 1

2

+

(∑

e∈Eh

∥∥[[v]]
∥∥2
e

) 1

2

( ∑

T∈Th

h−1‖∇v‖2T

) 1

2

.

Thus, ( ∑

T∈Th

‖∇v‖2T

) 1

2

.

( ∑

T∈Th

‖∇wv‖
2
T

)1

2

+

(∑

e∈Eh

h−1
∥∥[[v]]

∥∥2
e

)1

2

.

This leads to ∑

T∈Th

‖∇v‖2T .
∑

T∈Th

‖∇wv‖
2
T +

∑

e∈Eh

h−1
∥∥[[v]]

∥∥2
e
.

Thus,

‖v‖21,h . |||v|||2,

which completes the proof.
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6. Error estimates

The goal of this section is to establish some error estimates for the MWG finite

element solution uh arising from (3.8). The error will be measured in the triple-bar

norm ||| · ||| defined by (3.9), the semi-norm ‖ · ‖h defined by (5.13) and the standard L2

norm.

Theorem 6.1. Let uh ∈ Vh be the modified weak Galerkin finite element solution of the

Eqs. (1.2)-(1.3) arising from (3.8). Assume the exact solution u ∈ Hk+1(Ω). Then

|||uh −Q0u||| . hk‖u‖k+1. (6.1)

Proof. By letting v = eh in (4.2), we have

|||eh|||
2 =

(
A∇̃w(Qhu)−A∇w(Q0u),∇weh

)
+ c(u−Q0u, eh)

−
∑

T∈Th

〈
(A∇u−AQh(∇u)) · nnn, eh − {eh}

〉
∂T

− s(Q0u, eh). (6.2)

Applying the definition of ||| · ||| and the approximation property of the L2- projection,

we derive

∣∣c(u−Q0u, eh)
∣∣ .

( ∑

T∈Th

‖u−Q0u‖
2
T

) 1

2

( ∑

T∈Th

‖eh‖
2
T

) 1

2

. hk+1‖u‖k+1|||eh|||. (6.3)

Applying (5.10)-(5.12) and (6.3), we have

|||eh|||
2 . hk‖u‖k+1|||eh|||,

which completes the proof.

Next, we will measure the difference between u and uh in the semi-norm ‖ · ‖1,h as

defined in (5.13).

Corollary 6.1. Let uh ∈ Vh be the modified weak Galerkin finite element solution of the

Eqs. (1.2)-(1.3) arising from (3.8). Assume the exact solution u ∈ Hk+1(Ω). Then

‖u− uh‖1,h . hk‖u‖k+1. (6.4)

Proof. Applying (5.14) and (6.1), we obtain

‖uh −Q0u‖1,h . |||uh −Q0u||| . hk‖u‖k+1. (6.5)

With the definition of discrete H1 semi-norm and the estimates (5.4) and (5.7), we

derive

‖u−Q0u‖
2
1,h =

∑

T∈Th

‖∇(u−Q0u)‖
2
T +

∑

e∈Eh

h−1
∥∥[[u−Q0u]]

∥∥2
e
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≤
∑

T∈Th

‖∇(u−Q0u)‖
2
T +

∑

T∈Th

h−1‖u−Q0u‖
2
∂T

. h2k‖u‖2k+1.

Thus,

‖u−Q0u‖1,h . hk‖u‖k+1. (6.6)

It follows from the triangle inequality, and the estimates (6.5) and (6.6) that

‖u− uh‖1,h ≤ ‖u−Q0u‖1,h + ‖uh −Q0u‖1,h . hk‖u‖k+1.

This completes the proof.

In the rest of the section, we shall establish an optimal-order error for the weak

Galerkin finite element scheme (3.8) in the usual L2 norm by using a duality argument.

To this end, we consider a dual problem that seeks ψ ∈ H1
0 (Ω) ∩H

2(Ω) satisfying

−∇ · (A∇ψ) + cψ = eh in Ω. (6.7)

Assume that the above dual problem has the usual H2-regularity. This means that

‖ψ‖2 . ‖eh‖. (6.8)

Theorem 6.2. Let uh ∈ Vh be modified weak Galerkin finite element solution of the

Eqs. (1.2)-(1.3) arising from (3.8). Assume the exact solution u ∈ Hk+1(Ω). In addition,

assume that the dual problem (6.7) has the usual H2-regularity. Then

‖u− uh‖ . hk+1‖u‖k+1. (6.9)

Proof. By testing (6.7) with eh, we obtain

‖eh‖
2 = −

(
∇ · (A∇ψ), eh

)
+ (cψ, eh)

= (A∇ψ,∇eh)−
∑

T∈Th

〈
(A∇ψ) ·nnn, eh − {eh}

〉
∂T

+ (cψ, eh). (6.10)

Here we have used the fact 〈(A∇ψ) ·nnn, {eh}〉∂T = 0. Setting u = ψ and v = eh in (4.4),

we can obtain the following equation:

(A∇ψ,∇eh) =
(
A∇̃w(Qhψ),∇weh

)
+
∑

T∈Th

〈
(AQh(∇ψ)) ·nnn, eh − {eh}

〉
∂T
. (6.11)

According the definition of as(v,w) in (3.7) and the symmetry of A, we can get

as(eh, Q0ψ) =
(
A∇w(Q0ψ),∇weh

)
+ (ceh, Q0ψ) + s(eh, Q0ψ). (6.12)

By combining the (6.10)-(6.12), we can obtain

‖eh‖
2 = as(eh, Q0ψ) +

(
A∇̃w(Qhψ),∇weh

)
−
(
A∇w(Q0ψ),∇weh

)
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−
∑

T∈Th

〈
(A∇ψ −AQh(∇ψ)) ·nnn, eh − {eh}

〉
∂T

− s(eh, Q0ψ) + (ceh, ψ −Q0ψ). (6.13)

By (4.2), we derive

‖eh‖
2 =

(
A∇̃w(Qhu)−A∇w(Q0u),∇w(Q0ψ)) + c(u−Q0u,Q0ψ

)

−
∑

T∈Th

〈
(A∇u−AQh(∇u)) ·nnn,Q0ψ − {Q0ψ}

〉
∂T

− s(Q0u,Q0ψ)

+
(
A∇̃w(Qhψ)−A∇w(Q0ψ),∇weh

)
+ (ceh, ψ −Q0ψ)

−
∑

T∈Th

〈
(A∇ψ −AQh(∇ψ)) ·nnn, eh − {eh}

〉
∂T

− s(eh, Q0ψ)

= π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8.

According to Lemma 3.6, we obtain

|π1| =
∣∣∣
(
A∇̃w(Qhu)−A∇w(Q0u),∇w(Q0ψ)

)∣∣∣

≤
∣∣∣
(
A∇̃w(Qhu)−A∇w(Q0u),∇w(Q0ψ)− ∇̃w(Qhψ)

)∣∣∣

+
∣∣∣
(
A∇̃w(Qhu)−A∇w(Q0u), ∇̃w(Qhψ)

)∣∣∣

=
∣∣∣
(
A∇̃w(Qhu)−A∇w(Q0u),∇w(Q0ψ)− ∇̃w(Qhψ)

)∣∣∣

+
∣∣∣
(
A∇̃w(Qhu)−A∇w(Q0u),Qh(∇ψ)

)∣∣∣

= R1 +R2. (6.14)

By (5.8), we have

R1 .

( ∑

T∈Th

∥∥A∇̃w(Qhu)−A∇w(Q0u)
∥∥2
T

) 1

2

( ∑

T∈Th

∥∥∇w(Q0ψ)− ∇̃w(Qhψ)
∥∥2
T

) 1

2

. hk+1‖u‖k+1‖ψ‖2. (6.15)

By (5.5) and (5.7), we obtain

R2 =

∣∣∣∣
∑

T∈Th

〈
Qbu− {Q0u}, (AQh(∇ψ)) · nnn

〉
∂T

∣∣∣∣

=

∣∣∣∣
∑

T∈Th

〈
Qbu− {Q0u}, (AQh(∇ψ)−A∇ψ) · nnn

〉
∂T

∣∣∣∣

.
∑

T∈Th

h−
1

2 ‖u−Q0u‖∂T ‖Qh(∇ψ)−∇ψ‖T
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.

( ∑

T∈Th

h−1‖u−Q0u‖
2
∂T

) 1

2

( ∑

T∈Th

‖Qh(∇ψ)−∇ψ‖2T

)1

2

. hk+1‖u‖k+1‖ψ‖2. (6.16)

Combining (6.14)-(6.15), we have

|π1| . hk+1‖u‖k+1‖ψ‖2.

By (5.3), we have

|π2| =
∣∣c(u−Q0u,Q0ψ)

∣∣

.
∑

T∈Th

‖u−Q0u‖T
(
‖Q0ψ − ψ‖T + ‖ψ‖T

)

=
∑

T∈Th

‖u−Q0u‖T ‖Q0ψ − ψ‖T +
∑

T∈Th

‖u−Q0u‖T ‖ψ‖T

.

( ∑

T∈Th

‖u−Q0u‖
2
T

) 1

2

( ∑

T∈Th

‖Q0ψ − ψ‖2T

) 1

2

+

( ∑

T∈Th

‖u−Q0u‖
2
T

) 1

2

( ∑

T∈Th

‖ψ‖2T

)1

2

. hk+3‖u‖k+1‖ψ‖2 + hk+1‖u‖k+1‖ψ‖2

≤ hk+1‖u‖k+1‖ψ‖2.

By (5.5) and (5.7), we obtain

|π3| =

∣∣∣∣−
∑

T∈Th

〈
(A∇u−AQh(∇u)) · nnn,Q0ψ − {Q0ψ}

〉
∂T

∣∣∣∣

=

∣∣∣∣
∑

T∈Th

〈
(A∇u−AQh(∇u)) · nnn,Q0ψ − ψ + {ψ −Q0ψ}

〉
∂T

∣∣∣∣

≤
∑

T∈Th

∥∥A∇u−AQh(∇u))
∥∥
∂T

∥∥Q0ψ − ψ + {ψ −Q0ψ}
∥∥
∂T

.

( ∑

T∈Th

∥∥A∇u−AQh(∇u)
∥∥2
∂T

) 1

2

( ∑

T∈Th

‖ψ −Q0ψ‖
2
∂T

)1

2

. hk+1‖u‖k+1‖ψ‖2.

By (5.7) and the fact that [[u]] = 0 and [[ψ]] = 0, we can get

|π4| = |s(Q0u,Q0ψ)| =

∣∣∣∣h
−1
∑

e∈Eh

〈
[[Q0w − w]], [[Q0ψ − ψ]]

〉∣∣∣∣
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≤ h−1
∑

T∈Th

‖Q0w − w‖∂T ‖Q0ψ − ψ‖∂T

≤

(
h−1

∑

T∈Th

‖Q0w − w‖∂T

) 1

2

(
h−1

∑

T∈Th

‖Q0ψ − ψ‖∂T

) 1

2

. hk+1‖u‖k+1‖ψ‖2.

By (5.10)-(5.12) and (6.1), we obtain the following estimates:

|π5| =
∣∣(A∇̃w(Qhψ)−A∇w(Q0ψ),∇weh)

∣∣

. h‖ψ‖2|||eh||| . hk+1‖u‖k+1‖ψ‖2,

|π6| = |(ceh, ψ −Q0ψ)| .

( ∑

T∈Th

‖ψ −Q0ψ‖T

) 1

2

( ∑

T∈Th

‖eh‖T

) 1

2

≤

( ∑

T∈Th

‖ψ −Q0ψ‖T

) 1

2

|||eh||| . hk+2‖u‖k+1‖ψ‖2,

|π7| =

∣∣∣∣−
∑

T∈Th

〈(A∇ψ −AQh(∇ψ)) ·nnn, eh − {eh}〉∂T

∣∣∣∣

. h2‖ψ‖2|||eh||| . hk+2‖u‖k+1‖ψ‖2,

|π8| = |s(eh, Q0ψ)| . h‖ψ‖2|||eh||| . hk+1‖u‖k+1‖ψ‖2.

Thus, together with the fact that ‖ψ‖2 ≤ ‖eh‖, we obtain

‖u− uh‖ . hk+1‖u‖k+1,

which completes the proof.

7. Numerical experiments

The goal of this section is to report some numerical results for the modified weak

Galerkin finite element scheme proposed and analyzed in previous sections. For sim-

plicity, we consider a rectangular domain Ω = [0, 1] × [0, 1] with uniform triangulation

in this section. The triangular mesh is constructed by: 1) uniformly partitioning the

domain into n × n sub-rectangles; 2) dividing each rectangular element by diagonal

line with a negative slope. The mesh size is denoted by h = 1
n

. All of the examples

given below will use these triangulations of Ω, and will apply the MWG method to find

a numerical solution uh where uh|T ∈ P1(T ). Let u be the exact solution to the original

equations (1.2)-(1.3). We define the error by eh = uh − Q0u where Q0u is local L2

projection on Th. The numerical errors will be measured in the following norms:

|||eh|||
2 =

∑

T∈Th

(∫

T

A|∇weh|
2dT +

∫

T

c|eh|
2dT

)
+
∑

e∈Eh

(
h−1

∫

e

∣∣[[eh]]
∣∣2ds

)
,
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‖u− uh‖
2 =

∑

T∈Th

(∫

T

|u− uh|
2

)
dT.

Note that ||| · ||| is a discrete H1-norm, and ‖ · ‖ is the standard L2-norm. The mesh

generation and computation are all conducted in the MATLAB environment.

7.1. Example 1

In this example, we consider the following singularly perturbed reaction-diffusion

equations:

−ǫ∆u+ u = f in Ω, (7.1)

u = 0 on ∂Ω, (7.2)

where 0 < ǫ ≤ 1. The term f is chosen according the exact solution u = sin(πx) sin(πy).
We computed the MWG solutions for ǫ = 1, ǫ = 10−3 and ǫ = 10−9, respectively.

The numerical results are shown in Tables 1 and 2, which indicate that the MWG

solutions are convergent with order O(h) and O(h2) in discrete H1-norm and L2-norm,

respectively.

Table 1: Discrete H
1-norm error and convergence rate for Example 1.

h |||eh||| order |||eh||| order |||eh||| order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
4.479e-01 3.794e-01 3.797e-01

1

8
2.046e-01 1.13 1.567e-01 1.28 1.570e-01 1.27

1

16
9.690e-02 1.08 6.853e-02 1.19 6.873e-02 1.19

1

32
4.671e-02 1.05 3.136e-02 1.13 3.148e-02 1.13

1

64
2.280e-02 1.03 1.487e-02 1.08 1.494e-02 1.08

1

128
1.128e-02 1.01 7.223e-03 1.04 7.259e-03 1.04

Table 2: L2-norm error and convergence rate for Example 1.

h ‖uh − u‖ order ‖uh − u‖ order ‖uh − u‖ order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
5.556e-02 3.509e-02 3.503e-02

1

8
1.115e-02 2.32 7.539e-03 2.22 7.482e-03 2.23

1

16
2.277e-03 2.29 1.754e-03 2.10 1.730e-03 2.11

1

32
4.994e-04 2.19 4.312e-04 2.02 4.166e-04 2.05

1

64
1.163e-04 2.10 1.071e-04 2.01 1.022e-04 2.03

1

128
2.802e-05 2.05 2.672e-05 2.00 2.533e-05 2.01
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7.2. Example 2

In this example, we let the exact solution to the Eqs. (7.1)-(7.2) be

u = xy(1− x)(1 − y) exp(x− y). (7.3)

The right-hand side f is chosen according to the exact solution (7.3). We computed the

MWG solutions for ǫ = 1, ǫ = 10−3 and ǫ = 10−9, respectively. The numerical results

are shown in Tables 3 and 4, which indicate that the MWG solutions are convergent

with order O(h) and O(h2) in discrete H1-norm and L2-norm, respectively.

Table 3: Discrete H
1-norm error and convergence rate for Example 2.

h |||eh||| order |||eh||| order |||eh||| order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
4.891e-02 4.528e-02 4.529e-02

1

8
2.195e-02 1.16 1.916e-02 1.24 1.918e-02 1.24

1

16
9.998e-03 1.13 8.033e-03 1.25 8.044e-03 1.25

1

32
4.672e-03 1.10 3.473e-03 1.21 3.481e-03 1.21

1

64
2.236e-03 1.06 1.568e-03 1.14 1.573e-03 1.15

1

128
1.090e-03 1.04 7.364e-04 1.09 7.393e-04 1.09

Table 4: L2-norm error and convergence rate for Example 2.

h ‖uh − u‖ order ‖uh − u‖ order ‖uh − u‖ order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
5.822e-03 3.879e-03 3.869e-03

1

8
1.261e-03 2.21 8.408e-04 2.21 8.295e-04 2.22

1

16
2.547e-04 2.31 1.916e-04 2.13 1.834e-04 2.18

1

32
5.324e-05 2.26 4.608e-05 2.06 4.229e-05 2.12

1

64
1.185e-05 2.16 1.138e-05 2.02 1.008e-05 2.07

1

128
2.775e-06 2.09 2.835e-06 2.01 2.455e-06 2.04

7.3. Example 3

In this example, we consider the following singularly perturbed reaction-diffusion

equations with variable coefficient:

−ǫ∆u+ (x+ y)u = f in Ω, (7.4)

u = 0 on ∂Ω, (7.5)

where 0 < ǫ ≤ 1. The term f is chosen according the exact solution u = xy(1−x)(1−y).
The optimal convergence rates for the corresponding MWG solutions are presented in
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Table 5: Discrete H
1-norm error and convergence rate for Example 3.

h |||eh||| order |||eh||| order |||eh||| order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
3.421e-02 3.066e-02 3.067e-02

1

8
1.531e-02 1.16 1.262e-02 1.28 1.263e-02 1.28

1

16
7.103e-03 1.11 5.355e-03 1.24 5.366e-03 1.23

1

32
3.368e-03 1.07 2.370e-03 1.18 2.378e-03 1.17

1

64
1.628e-03 1.05 1.095e-03 1.11 1.099e-03 1.11

1

128
7.984e-04 1.03 5.222e-04 1.07 5.246e-04 1.07

Table 6: L2-norm error and convergence rate for Example 3.

h ‖uh − u‖ order ‖uh − u‖ order ‖uh − u‖ order

ǫ = 1 ǫ = 10−3 ǫ = 10−9

1

4
4.287e-03 2.602e-03 2.598e-03

1

8
8.718e-04 2.30 5.674e-04 2.20 5.607e-04 2.21

1

16
1.746e-04 2.32 1.319e-04 2.10 1.274e-04 2.14

1

32
3.711e-05 2.23 3.207e-05 2.04 3.009e-05 2.08

1

64
8.414e-06 2.14 7.950e-06 2.01 7.290e-06 2.05

1

128
1.995e-06 2.08 1.983e-06 2.00 1.793e-06 2.02

Tables 5 and 6 for ǫ = 1, ǫ = 10−3 and ǫ = 10−9. The numerical results demonstrate

that the MWG solutions are convergent with order O(h) and O(h2) in discrete H1-norm

and L2-norm, respectively.

7.4. Example 4

In this example, we consider the following reaction-diffusion equations with vari-

able coefficient:

−∇ ·
(
(x+ y)∇u

)
+ ex+yu = f in Ω, (7.6)

u = 0 on ∂Ω. (7.7)

The term f is chosen according the exact solution u = sin(πx) sin(πy). The optimal

convergence rates for the MWG solution are presented in Tables 7 and 8, which demon-

strate that the MWG solutions are convergent with order O(h) and O(h2) in discrete

H1-norm and L2 norm, respectively.

All the numerical examples given above are in good agreement with the theoretical

analysis in Section 6, which indicate that the MWG finite element method (3.8) is

accurate and robust.
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Table 7: Discrete H
1-norm error and convergence

rate for Example 4.

h |||eh||| order
1

4
4.649e-01

1

8
2.196e-01 1.08

1

16
1.058e-01 1.05

1

32
5.141e-02 1.04

1

64
2.524e-02 1.03

1

128
1.249e-02 1.01

Table 8: L
2-norm error and convergence rate for

Example 4.

h ‖uh − u‖ order
1

4
5.409e-02

1

8
1.102e-02 2.30

1

16
2.327e-03 2.24

1

32
5.214e-04 2.15

1

64
1.224e-04 2.09

1

128
2.960e-05 2.05

8. Conclusions

We have presented a robust modified weak Galerkin finite element scheme for

reaction-diffusion equations. The method eliminates the unknowns associated with the

element boundaries in the WG method by introducing the average and the jump. As

a result, the MWG method has fewer degrees of freedom than that of the WG method.

In the MWG method, the finite element space and test functions space are the same

space and the error eh = uh − Q0u belongs to the test functions space. This has con-

tributed to the errors analysis for reaction-diffusion equations. We have established

optimal-order error for the numerical approximation in H1-norm and L2-norm. The

numerical experiments indicate that the MWG scheme is accurate and robust even

when the solved equations are the singularly perturbed reaction-diffusion equations.
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